Tree Models
Coalescent Trees, Birth Death Processes, and Beyond...

Will Freyman

Department of Integrative Biology
University of California, Berkeley

freyman@berkeley.edu
http://willfreyman.org

IB290 Grad Seminar in Phylogenetics, Fall 2017
Tree Models
Statistical Distributions of Trees

Priors on evolutionary trees:
- Uniform tree topologies
- Coalescent trees
- Birth death processes

Different priors for different purposes:
- Branch lengths in substitutions per site?
- In units of time?
Tree Shape

branching diagram with no labels at the tip
Shape, Topology, Labeled History
Three Aspects of Trees

Tree Topology
Shape, Topology, Labeled History
Three Aspects of Trees

Tree Topology

same shape, different topologies...
Shape, Topology, Labeled History

Three Aspects of Trees

Tree Topology

same topology, different roots...
the topology plus a temporal ordering of the nodes
same topology, different labeled histories
Tree Models
Statistical Distributions of Trees

Three tree models we’ll introduce today:

- Uniform tree topologies
- Uniform labeled histories
 - Coalescent trees
 - Birth death processes
Uniformly Distributed Tree Topologies

We ignore labeled histories and simply assign each tree topology an equal prior probability:

1. An OK assumption if we don’t care about time
2. Branch length in units of the expected # of substitutions per site
3. Not all tree shapes will be equally probable
Uniformly Distributed Tree Topologies

Uniformly distributed tree topologies are:

1. the implicit assumption in RAxML, PAUP*, etc.
2. the default tree prior in MrBayes

In a Bayesian framework we also need to define a prior for branch lengths, something like:

\[v_i \sim \text{Exponential}(\lambda = 10.0) \]
Uniformly Distributed Labeled Histories

We often want to disentangle *time* from the *rate* of character change:

- Estimating demographic parameters
- Estimating divergence times
- Estimating diversification rates
 - adaptive radiation
 - key innovations
 - mass extinction

To do this, we must use tree models that account for labeled histories:

- coalescent trees
- birth death processes

Why?
Uniformly Distributed Labeled Histories

The expected # of substitutions/site occurring along a branch is the product of the substitution rate and time.

(length = rate \times time)

To get branch lengths in unit of time we must estimate substitution rates and time separately.

Image from Tracy Heath’s slides (2017)
Coalescent Trees

Bayesian skyline plot

Image from Drummond et al. (2005)
Coalescent Trees

Fisher-Wright and other classical population genetic models predict allele frequencies in forward time.

Coalescent theory looks at the same process backwards in time and describes the time until sampled lineages “coalescence”.

These models usually assume random mating, no selection, no structure, no recombination, and no gene flow – but they can be extended to handle these scenarios.

Image from Yang (2014)
Coalescent Trees

What is the probability of two lineages coalescing in a single generation?
What is the probability of two lineages coalescing in a single generation?

\[P(g = 1|N) = \frac{1}{N} \]
So what is the probability of two lineages *not* coalescing in a single generation?
So what is the probability of two lineages not coalescing in a single generation?

\[P(g \neq 1|N) = 1 - \frac{1}{N} \]
What is the probability that coalescence occurred \(g + 1 \) generations ago?

- Probability of no coalescence for \(g \) generations:
 \[
 \left(1 - \frac{1}{N}\right) \times \left(1 - \frac{1}{N}\right) \times \cdots = \left(1 - \frac{1}{N}\right)^g
 \]

- Followed by probability of coalescence:
 \[
 \frac{1}{N}
 \]

 \[
 P(g + 1|N) = \frac{1}{N} \left(1 - \frac{1}{N}\right)^g
 \]
This is the geometric distribution:

\[g = \frac{1}{N} \left(1 - \frac{1}{N}\right)^g \]

It describes the time until the first success in a series of independent trials, where the probability of success is \(p \) and the probability of failure is \((1 - p) \).

mean wait time = \(1/p = N\)

The expected time until coalescence is \(N \) generations!
The probability of a coalescence among n sampled lineages:

$$\frac{\binom{n}{2}}{N}$$

n choose 2 is the number of ways the coalescent event could have occurred:

$$\binom{n}{2} = \frac{n!}{2!(n - 2)!}$$

So now our probability is:

$$P(g + 1|N, n) = \frac{\binom{n}{2}}{N} \left(1 - \frac{\binom{n}{2}}{N}\right)^g$$
The geometric distribution is a discrete distribution.

The exponential distribution is the equivalent continuous distribution:

$$\lambda e^{-\lambda t}$$

Instead of discrete generations, we now use continuous time.

Now the coalescent process converges to a continuous time Markov process with instantaneous rate of coalescence:

$$\lambda = \frac{\binom{n}{2}}{N}$$

$$f(t|N, n) = \frac{\binom{n}{2}}{N} e^{-\frac{\binom{n}{2}}{N} t}$$
We have assumed a constant population size N.

Instead we can specify a function that describes a changing population size through time:

$$N \rightarrow N(t)$$

Now the rate of coalescence is a function of t:

$$\frac{\binom{n}{2}}{N(t)}$$

so we must integrate with respect to t:

$$\frac{(n/2)}{N} e^{-\frac{(n/2)}{N} t} \rightarrow \frac{(n/2)}{N(t)} \exp \left(-\int_0^t \frac{(n/2)}{N(t)} \, dt \right)$$
Coalescent Trees

So given a set of samples n and a demographic function $N(t)$ we know the time t of a coalescent event occurring has the distribution:

$$f(t|N(t), n) = \frac{(n)}{2N(t)} \exp \left(-\int_0^t \frac{(n)}{2N(t)} dt \right)$$

But what about more than one coalescent event?
Coalescent Trees

Define a list of \(i \) coalescent times:

\[
\mathcal{C} = t_1, t_2, \ldots, t_i
\]

And finally:

\[
f(C|N(t), n) = \prod_{j=1}^{i} \frac{\binom{n}{2}}{N(t_j)} \exp \left(-\int_{0}^{t_j} \frac{\binom{n}{2}}{N(t)} \, dt \right)
\]

This gives us the probability density of a coalescent tree (a labeled history) within a lineage.

It relates:

1. the population size, to the
2. the times of coalescent events
Coalescent Trees

Image from Sainani (2009)
How can we link coalescent theory and phylogenetic theory?

- Each branch of the phylogeny is a lineage.
- We already derived the probability of a coalescent history within a single branch:

\[
f(C|N(t), n) = \prod_{j=1}^{i} \frac{(n/2)}{N(t_j)} \exp \left(- \int_{0}^{t_j} \frac{(n/2)}{N(t)} dt \right)\]

- The probability density of the coalescent history of a “gene tree” embedded within a “species tree” is the product of the coalescent probabilities for each branch...

Image from Leliaert et al. (2014)
\[f(g|S, \mathcal{N}) = \prod_{k \in S} f(C_k|N_k(t), n_k) \]

where

\[\mathcal{N} = \{N_1(t), \ldots, N_k(t)\} \]
Coalescent Trees

Now we have everything we need to describe the *multispecies coalescent*:

\[
f(S, N|D) = \prod_{i=1}^{n} f(d_i|g_i) f(g_i|S, N) f(S) f(N)
\]

This is the fully parameterized model as implemented in software like:

- RevBayes
- *BEAST
- BPP

Since the model is computationally intensive there are many methods that approximate it like SVDQuartets and ASTRAL.

Image from Leliaert et al. (2014)
The multispecies coalescent:

\[
f(S, N|D) = \prod_{i=1}^{n} f(d_i|g_i)f(g_i|S, N)f(S)f(N) f(D)
\]

\[
f(d_i|g_i) = \text{Felsenstein likelihood for gene alignment given a gene tree}
\]

\[
f(g_i|S, N) = \text{coalescent probability of gene tree given species tree}
\]

\[
f(S) = \text{prior probability of species tree}
\]

\[
f(N) = \text{prior probability of population sizes}
\]

\[
f(D) = \text{marginal likelihood}
\]
What sort of prior could we use for the species tree?

\[f(S) = ? \]

Birth-death process!

Image from Leliaert et al. (2014)
Birth-Death Processes

- A species gives birth to a new species with rate λ
- A species goes extinct with rate μ
- This is a continuous-time Markov process with the rate matrix:
 \[
 Q_{ij} = \begin{cases}
 i\lambda & j = i + 1, i \geq 1, \\
 i\mu & j = i - 1, i \geq 1, \\
 0 & \text{otherwise}.
 \end{cases}
 \]
- How many states does it have?
- How are the times between events distributed in a Markov process?
Now we can simulate a tree using the birth-death process:
Now we can simulate a tree using the birth-death process:

speciation event
Now we can simulate a tree using the birth-death process:
Birth-Death Processes

Now we can simulate a tree using the birth-death process:
Now we can simulate a tree using the birth-death process:
Birth-Death Processes

Complete simulated tree with 5 extant lineages:
Birth-Death Processes

Complete Tree

Reconstructed Tree
Reconstructed Tree

The probability density function of the set of speciation times \mathcal{T} of a reconstructed tree under the constant-rate birth-death process is:

$$f(\mathcal{T}|N(t_0) = 1, \lambda, \mu) = (n_p - 1)! \lambda^{n_p-1} \frac{r^3 e^{-r(t_p-t_0)}}{(r e^{-r(t_p-t_0)})^3}$$

$$\times \prod_{i=1}^{n_p-1} \frac{r^2 e^{-r(t_p-t_i)}}{(r e^{-r(t_p-t_i)})^2}$$

where $r = \lambda - \mu$, n_p is the number of lineages that survived to the present, t_p is the time at the present, and conditioned on there being one lineage at the origination time t_0.
Birth-Death Processes

Reconstructed Tree

Now we can use the probability density function \(f(T | N(t_0) = 1, \lambda, \mu) \) to estimate divergence times and speciation/extinction rates.

In a Bayesian setting we must specify our priors. A few possible parameterizations:

1. ▶ Speciation rate: \(\lambda \)
 - Extinction rate: \(\mu \)

2. ▶ Speciation rate: \(\lambda \)
 - Turnover rate: \(\mu / \lambda \)

3. ▶ Net-diversification rate: \(\lambda - \mu \)
 - Turnover rate: \(\mu / \lambda \)
What are reasonable values for the priors?

We have good prior information about net-diversification:

\[E[\lambda - \mu] = \ln \left(\frac{n_p}{n_0} \right) / t_0 \]

If we assume speciation is greater than extinction (not always a good assumption):

\[\frac{\mu}{\lambda} \sim \text{Beta}(1, 1) \]
Birth-Death Processes
Divergence Time Estimation

Node calibrations:
- Normal distribution
- Lognormal distribution
- Exponential distribution
- Uniform distribution w/ hard min & soft max
- Uniform distribution w/ hard min & hard max
- Point value
- Fossilized birth-death

Tip calibrations:
- Empirical calibrated radiocarbon sampler
- Normal distribution
- Uniform distribution w/ hard min & max
- Point value

Image from Ho & Duchêne (2014)
Birth-Death Processes

Diversification rate estimation:

1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates
Birth-Death Processes

Diversification rate estimation:

1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates
Birth-Death Processes
Diversification rates through time

Episodic Diversification Process

- speciation rate
- extinction rate
- speciation-rate shift
- extinction-rate shift
- mass-extinction event

Image from Sebastian Höhna’s slides (2017)
Birth-Death Processes
Diversification rates through time

Bird diversification by Jetz et al. (2012)

Diversification rates estimated in 5 million year intervals
Birth-Death Processes

Diversification rate estimation:

1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates
Birth-Death Processes
Character-dependent diversification rates

Joint Models of the Tree and Character Evolution

Binary State Speciation and Extinction (BiSSE) Model
Birth-Death Processes
Character-dependent diversification rates

BiSSE, MuSSE, HiSSE, GeoSSE, ChromoSSE are all special cases of ClaSSE

\[
\frac{dD_{N_i}(t)}{dt} = -\left(\sum_j \sum_k \lambda_{ijk} + \sum_j Q_{ij} + \mu \right) D_{N_i}(t) + \sum_j Q_{ij} D_{N_j}(t) + \sum_j \sum_k \lambda_{ijk} \left(D_{N_i}(t) E_j(t) + D_{N_j}(t) E_i(t) \right)
\]

\[
\frac{dE_i(t)}{dt} = -\left(\sum_j \sum_k \lambda_{ijk} + \sum_j Q_{ij} + \mu \right) E_i(t) + \mu \cdot \sum_j Q_{ij} E_j(t) + \sum_j \sum_k \lambda_{ijk} E_j(t) E_k(t).
\]
Birth-Death Processes

Character-dependent diversification rates

Changes in mating system have different long and short term evolutionary consequences.

The time lag from the loss of self-incompatibility until the onset of evolutionary decline:

Image from Freyman & Höhna (in prep)
Birth-Death Processes

Diversification rate estimation:

1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates
4. Branch-specific diversification rates
Birth-Death Processes
Branch-specific diversification rates

Hummingbird diversification by McGuire et al. (2014)
Diversification rates estimated using BAMM
Birth-Death Processes
Branch-specific diversification rates

Modeling issues in BAMM

A) actual process
(process may vary on extinct lineages)

B) described process
(extinct lineages inherit ancestral process)

C) implemented process
(extinct lineages laterally inherit the process of the left but not the right observed branch)

Image from Sebastian Höhna’s slides (2017)
Birth-Death Processes
Branch-specific diversification rates

The PERSEUS solution:

Discretize speciation and extinction rates

Use MuSSE with all tip states (rate categories) unknown
Tree Models

Three approaches covered today:

1. Uniform Tree Topologies
2. Coalescent Trees
3. Birth-Death Processes

What about phylogenetic networks?!