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Tree Models

Statistical Distributions of Trees

Priors on evolutionary trees:
» Uniform tree topologies
» Coadlescent trees
» Birth death processes

Different priors for different
purposes:

» Branch lengths in
substitutions per site?

» In units of time?




Shape, Topology, Labeled History

Three Aspects of Trees

Tree Shape

branching diagram with no labels at the tip
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same shape, different topologies...
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Tree Topology Liﬁ—l

same topology, different roots...
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the topology plus a femporal ordering of the nodes



Shape, Topology, Labeled History

Three Aspects of Trees

A B C D E A B

L
! 3 3
Labeled History ' Lii—‘ Li

2

1T

same topology, different labeled histories

1T




Tree Models

Statistical Distributions of Trees

Three tree models we’ll
infroduce today:

» Uniform tree topologies
» Uniform labeled histories

» Coalescent trees
» Birth death processes




Uniformly Distributed Tree Topologies

We ignore labeled histories and simply assign each free
topology an equal prior probability:

1. An OK assumption if we don’t care about time

2. Branch length in units of the expected # of
substitutions per site

3. Not all free shapes will be equally probable



Uniformly Distributed Tree Topologies

Uniformly distributed tree topologies are:
1. the implicit assumption in RAxML, PAUP*, etcC,

2. the default tree prior in MrBayes

In a Bayesian framework we also need to define a prior for
branch lengths, something like:

v; ~ Exponential (A = 10.0)



Uniformly Distributed Labeled Histories

We often want to disentangle time from the rafe of
character change:

» Estimating demographic parameters

» Estimating divergence times

» Estimating diversification rates

» adaptive radiation
» key innovations
» mass extinction

To do this, we must use free models that account for
labeled histories:

» coalescent frees
» birth death processes
Why?



Uniformly Distributed Labeled Histories

The expected # of substitutions/sife occurring along a
bbranch is the product of the substitution rafe and time.

= 5
£ =

length = rate x time length = rate length = time

To get branch lengths in unit of time we must estimate
substitufion rates and fime separately.

Image from Tracy Heath's slides (2017)



Coalescent Trees

Bayesian skyline plot
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Image from Drummond et al. (2005)



Coalescent Trees

(a) Fisher-Wright model (b) Gene tree with coalescent times

o

» Fisher-Wright and other classical population genetic models predict allele
frequencies in forward time.

» Coalescent theory looks at the same process backwards in time and describes
the fime until sampled lineages “coalescence”.

» These models usually assume random mating, no selection, no structure, no
recombination, and no gene flow — but they can be extended to handle these
scenarios.

Image from Yang (2014)



Coalescent Trees
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What is the probability of two lineages
codlescing in a single generation?
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Coalescent Trees
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So what is the probability of two
lineages not coalescing in a single
generation?



Coalescent Trees
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So what is the probability of two
lineages not coalescing in a single
generation?
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Plg#£1IN) =1-+



Coalescent Trees

e m e E e, —--—-——————

ELEEEE TR >
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What is the probability that coalescence
occured g + 1 generations ago?

» Probability of no coalescence for g
generations:

(-3 ()= (3
» Followed by probability of coalescence:

1
N



Coalescent Trees

e m e E e, —--—-——————

ELEEEE TR >
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This is the geometric distribution:

1 1\9
-5(-%)
It describes the time until the first success in a
series of independent trials, where the
probability of success is p and the probability of
failure is (1 — p).

mean wait fime =1/p =N

The expected time until coalescence is N
generations!



Coalescent Trees

> The probability of a coalescence among
n sampled lineages:

» n choose 2 is the number of ways the

t o000 O0O0GO® coalescent event could have occurred:
0000000 (n) B nl
0o000O0OCGO 2/ 7 2A(n—2)

0000000
0000000
0000000 » So now our probability is:

e00000O0 ) .
P(g+1|N,n) = (LN)(l_ (i)g

e m e E e, —--—-——————
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Coalescent Trees

e m e E e, —--—-——————
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The geometric distribution is a discrete
distribution.

The exponential distribution is the
equivalent continuous distribution:

)\ef)\t
Instead of discrete generations, we now
use continuous time.

Now the coalescent process converges to
a continuous time Markov process with
instantaneous rate of coalescence:

o )



Coalescent Trees

» We have assumed a constant population
size N.

» Instead we can specify a function that
describes a changing population size

so we must integrate with respect fo ¢:

A~
E through time:
; N = N(t)
¢ E > Now the rate of coalescence is a function
! of t. N
: (2)
: N(t)’

G -G, () ')
We — N exp (—/0 N(t)dt>




Coalescent Trees

e m e E e, —--—-——————

» So given a set of samples n and a
demographic function N(¢) we know the
time t of a coalescent event occurring
has the distribution:

FUN G = 2 exp <_ [ %@

» But what about more than one
coalescent event?



Coalescent Trees

» Define alist of ¢ coalescent times:

C=ti,to... .t

~
: > And finally:

L evew ")
t, 0Q9QO09e f(CIN(t) H N ﬂdt
: eoee o N

' edee
: o000
H 'Y X ) > This gives us the probability density of a
! o0 coalescent tree (a labeled history) within
a lineage.
( N
> |t relates:
T —— > 1. the population size, to the

N (t) 2. the times of coalescent events



Coalescent Trees
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Image from Sainani (2009)



Coalescent Trees

How can we link coalescent theory and
phylogenetic theory?

» Each branch of the phylogeny is a
lineage.

» We already derived the probability of a
coalescent history within a single branch:

FeIN H 3 < A %a)

» The probability density of the coalescent
history of a "gene tree” embedded within
a “species tree” is the product of the
coalescent probabilities for each
branch...

Image from Leliaert et al. (2014)
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) F(C1IN1(t), n1) f(C2|N2(t), n2) f(C3|N3(t), n3)

it

F(Ca|Na(t), na)

ﬁr

f(g|S7N) =
1T rCINk(t), n4)
kes
where
N = {Ni(1), ..., Nu(t)}
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Coalescent Trees

Now we have everything we need to describe
the multispecies coalescent:

L= f(dilgi) f(g:lS,N)f(S)fN)
M F(S.ND) = +0)
This is the fully parameterized model as
implemented in software like:
> RevBayes
> *BEAST
> BPP

Since the model is computationally intensive
there are many methods that approximate it
like sVDQuartets and ASTRAL.

Image from Leliaert et al. (2014)



Coalescent Trees

The multispecies coalescent:

FS.N|D) = [, f(dilgi) f(:lS, N) f(S)f(N)
f(D)
d |g — Felsenstein likelihood for gene
i) ~ alignment given a gene free
gz\ S, ./\/ coole§cenT propabili‘ry of gene

tree given species free

= prior probability of species tree

= prior probability of population
sizes

f(D) = marginal likelihood

Image from Leliaert et al. (2014)



Coalescent Trees

What sort of prior could we use for the
M species tree?
f(8) =7
Birth-death process!

Image from Leliaert et al. (2014)



Birth-Death Processes

v

A species gives birth to a new species with rate A
A species goes extinct with rate

This is a continuous-time Markov process with the rate
mMatrix:

v

v

iN j=i+1,0>1,
Qij=1Rip j=i—1,9>1,
0 otherwise.

v

How many states does it have?

How are the fimes between events distributed in a
Markov process?

v



Birth-Death Processes

Now we can simulate a tree using the birth-death process:

~
P

origination time t; —



Birth-Death Processes

Now we can simulate a tree using the birth-death process:
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speciation event 7 |
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Birth-Death Processes

Now we can simulate a tree using the birth-death process:




Birth-Death Processes

Complete simulated tree with § extant lineages:

A B D E
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Birth-Death Processes

Complete Tree Reconstructed Tree
A B C D E A B C D E
| B |
t : @




Birth-Death Processes

Reconstructed Tree

T L

|

E

The probability density function of the set of
speciation times 7 of a reconstructed tree under
the constant-rate birth-death process is:

1 r3e—r(tp—to)

H(TIN(to) = 1, p) = (np — 1)IA" (re—r—t0))3

mol o (tp—t)
x . ° 7 7
e (re—"(tp—ti))2
where r = X — u, ny is the number of lineages that
survived to the present, t,, is the time at the present,
and conditioned on there being one lineage at the
origination time to.



Birth-Death Processes

Reconstructed Tree

A B C D E Now we can use the probability density function
I F(TIN(to) = 1, A\, n) to estimate divergence times
LJ and speciation/extinction rates.

In a Bayesian sefting we must specify our priors. A
few possible parameterizations:

1. > Speciation rate: A
> Extinction rate: u

2. > Speciation rate: A
> Turnover rate: u/A

3. > Net-diversification rate: A —
> Turnover rate: u/A



Birth-Death Processes

Reconstructed Tree

AL_],B ¢ D E » What are reasonable values for the priors?
LJ > We have good prior information about
net-diversification:

EA— )= <"P>/t0
no

> If we assume speciation is greater than
extinction (not always a good assumption):

11/ X ~Beta(1,1)



Birth-Death Processes

Divergence Time Estimation

Node calibrations:

>
>
>
>
>

>
>

Normal distribution
Lognormal distribution
Exponential distrioution

Uniform distribution w/ hard min &
soft max

Uniform distribution w/ hard min &
hard max

Point value
Fossilized birth-death

Tip calibrations:

>

>
'S

Empirical calibrated radiocarbon
sampler

Normal distribution

Uniform distribution w/ hard min &
max

Point value

Image from Ho & Duchéne (2014)



Birth-Death Processes

Diversification rate estimation:

1. Constant diversification rates
2. Diversification rates through time
3. Character-dependent diversification rates

4, Branch-specific diversification rates



Birth-Death Processes

Diversification rate estimation:
1 c . oo
2. Diversification rates through time
3. Character-dependent diversification rates

4, Branch-specific diversification rates



Birth-Death Processes

Diversification rates through time

Episodic Diversification Process
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Image from Sebastian Hohna's slides (2017)



Birth-Death Processes

Diversification rates through time

a Net diversification rate
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b Lineage speciation rate
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Bird diversification by Jetz et al.
(2012)

Diversification rates estimated in
5 million year intervals



Birth-Death Processes

Diversification rate estimation:
e worsificali
> Diversifieati .

3. Character-dependent diversification rates

4, Branch-specific diversification rates



Birth-Death Processes

Character-dependent diversification rates

Joint Models of the Tree and Character Evolution
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Birth-Death Processes

Character-dependent diversification rates

BiSSE, MUSSE, HISSE, GeoSSE, ChromoSSE are all special cases of ClaSSE

dDy;(t
;}f‘ ) _ *(ZZW +300,+ ,,) Dyilt) +37QuDxs(t) +303 A (Dm(t)E7(t) + DN,(t)Ej(t)>
| ik i i ik
no event occurred anagenetic change speciation followed by extinction w/
possible cladogenetic change
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no event followed by extinction anagenetic change speciation followed by extinction w/
extinction followed by extinction possible cladogenetic change

Image from Freyman & Héhna (2017)



Birth-Death Processes

Character-dependent diversification rates

Changes in mating system have

e —— § different long and short term
———— evolutionary consequences.
] T —r—
H
g
§
L‘—‘% g
—— The time lag from the loss of
Self-compatible hidden state self-incompatibility until the onset of
@ seitcompatible hidden state b ] evolutionary decline:
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Image from Freyman & Hohna (in prep)



Birth-Death Processes

Diversification rate estimation:

4, Branch-specific diversification rates



Birth-Death Processes

Branch-specific diversification rates

Hummingbird diversification by
McGuire et al. (2014)
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Birth-Death Processes

Branch-specific diversification rates

Modeling issues in BAMM

A) actual process B) described process C) implemented process
(process may vary on extinct lineages) (extinct lineages inherit ancestral process)  (extinct lineages laterally inherit the process of the left but not the right observed branch)

time time time time

Image from Sebastian Hohna's slides (2017)



Birth-Death Processes

Branch-specific diversification rates

probability density
e

The PERSEUS solution:

Discretize speciation and
extinction rates

Use MUSSE with all tip states (rate
categories) unknown



Tree Models

Three approaches covered today:

1. Uniform Tree Topologies
2. Coalescent Trees
3. Birth-Death Processes

What about phylogenetic networks?!



