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Summary

1. The detection of evolutionary shifts in trait evolution from extant taxa is motivated by the study of conver-

gent evolution, or to correlate shifts in traits with habitat changes or with changes in other phenotypes.

2. We propose here a phylogenetic lasso method to study trait evolution from comparative data and detect past

changes in the expected mean trait values.We use the Ornstein–Uhlenbeck process, which canmodel a changing

adaptive landscape over time and over lineages.

3. Our method is very fast, running in minutes for hundreds of species, and can handle multiple traits. We also

propose a phylogenetic Bayesian information criterion that accounts for the phylogenetic correlation between

species, as well as for the complexity of estimating an unknown number of shifts at unknown locations in the

phylogeny. This criterion does not suffer model overfitting and has high precision, so it offers a conservative

alternative to other information criteria.

4. Our re-analysis of Anolis lizard data suggests a more conservative scenario of morphological adaptation and

convergence than previously proposed. Software is available onGitHub.

Key-words: adaptation, convergent evolution, lasso, ‘1ou, phylogenetic Bayesian information

criterion, phylogenetic comparativemethod, regularization

Introduction

Recent advances in DNA sequencing technology and phy-

logenetic methods enabled accurate reconstructions of the

evolutionary relationships among very large groups of spe-

cies, and opened new avenues to study phenotypic trait

evolution. The inference of evolutionary trees with thou-

sands of taxa or thousands of genes demands complex

mathematical models and computational tools (see for

instance Bininda-Emonds et al. 2007; Wickett et al. 2014).

Likewise, the inference of phenotypic trait evolution on

very large trees demands complex models that are capable

of handling heterogeneity across a wide range of species.

Hansen (1997) used an Ornstein–Uhlenbeck (OU) process

to model the macroevolution of a phenotype subject to

selection pressure towards an ‘optimal’ value. This OU

model was validated on a large number of fossil lineages

(Hunt, Bell & Travis 2008; Hopkins & Lidgard 2012), as

well as in cross-species comparative analyses (Harmon

et al. 2010).

Hansen (1997) proposed to use heterogeneous OU mod-

els with different optimal phenotype values on different

branches of the tree. These models can then be used to test

various hypotheses about phenotypic adaptation (Butler &

King 2004). For instance, Scales, King & Butler (2009)

evaluated a small set of predefined hypotheses to place the

various optima on the tree, to investigate whether fibre-type

composition of a leg muscle in lizards is adaptive to the

species predator escape strategy, or to its foraging strategy,

or both. Mahler et al. (2013) also used OU models with

varying optima, but without a preselected set of hypotheses

for the number and placement of these optima (see also

Ingram & Mahler 2013; Ingram & Kai 2014). To do so,

they used a stepwise search among OU models to study

how natural selection shaped the morphology of Caribbean

Anolis lizards (Losos 2009), and then correlated the phylo-

genetic placements of shifts in OU optima to habitat

changes. Repeated evolution of similar phenotypes in simi-

lar environments was taken as evidence for a deterministic

aspect of macroevolution.

Several methods were proposed for OU models with

multiple optima on phylogenetic trees, to infer the number

and the position of shifts in trait optimum without prede-

fined hypotheses. This task is difficult both computationally

and theoretically, due to the very large number of models

to be evaluated and compared statistically. Uyeda &

Harmon (2014) developed a Bayesian method, with a

Monte Carlo Markov chain implementation in the R pack-

age bayou. This method quantifies the uncertainty about

the number of shifts and their phylogenetic placement. The

results can vary quite heavily, however, depending on*Correspondence author. E-mail: cecile.ane@wisc.edu
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the prior distribution that the user needs to specify for the

number of shifts. Ingram & Mahler (2013) developed a

maximum likelihood method and a stepwise search algo-

rithm, ‘surface’, with possibly convergent shifts to the same

optimum (see also Mahler & Ingram 2014). Surface uses

the Akaike information criterion (AIC) to select the number

of shifts. In this setting, however, Ho & An�e (2014a)

showed that AIC is biased towards model overfit and sug-

gested using instead a modified Bayesian information crite-

rion (mBIC; Zhang & Siegmund 2007) to reduce the

detection of false shifts. In addition to the theoretical diffi-

culties of inferring the correct number of shifts, both bayou

and surface can become computationally heavy with large

trees, handling a maximum of a few hundred taxa.

We propose here a new method to detect shifts in pheno-

typic optima under the OU model on trees. The method,

‘1ou, is based on the lasso (Tibshirani 1996) and can han-

dle extremely large phylogenetic trees with thousands of

taxa. For example, analysis of sporangium shape from 886

moss (Bryophyta) species (Rose, Kriebel & Sytsma 2016)

takes only 220 min with our method, whereas surface did

not complete after 6 weeks. As far as we know, it is the

first time that a lasso-type method is proposed for phyloge-

netically structured data. In the next section, we present our

lasso-based methods, along with choices to deal with

identifiability issues and with a new phylogenetic-aware

information criterion (pBIC) to do model selection. This

section can be skipped at first, and its technical details are

presented in Appendix S1–S4 (Supporting information). In

the following section, we show using simulations that our

‘1ou method is also more accurate and can take advantage

of multiple traits to infer a more robust model. We then

illustrate the method and its scalability on data from

100 Anolis lizard species and four traits. We implemented

the method in R, available at https://github.com/khab

bazian/l1ou.

Although we focus on OU models with shifts in the opti-

mal phenotype value, we recognize that many other types of

heterogeneity might affect real data, especially at deep evo-

lutionary scales. Changes in the rate of evolution were con-

sidered by others, mostly for BM models that exclude

adaptation, to test prespecified hypotheses about where rate

changes have taken place (O’Meara et al. 2006; Stack et al.

2011), or to detect the phylogenetic position and number of

these rate changes (Eastman et al. 2011; Rabosky 2014).

Changes in the strength of selection towards the optimum

value have also been proposed by Beaulieu et al. (2012),

although simultaneously detecting shifts in several of these

parameters was shown to be difficult. We also caution

against a literal interpretation of OU model parameters,

especially at deep phylogenetic scales. In particular, even if

the ‘optimal value’ is estimated to be constant within a

given clade, this value may only reflect a broad adaptive

zone, around which the true optimal value constantly fluctu-

ates (Uyeda & Harmon 2014). In this case, it is prudent to

interpret a as a parameter for phylogenetic correlation,

rather than a direct estimate of the selection strength.

Lasso-basedmethod for shift detection

THE OU MODEL ON A PHYLOGENETIC TREE

Wemodel the evolution of a continuous phenotypic trait y(t) over time

t with an Ornstein–Uhlenbeck (OU) process, defined by the following

stochastic equation:

dyðtÞ ¼ a hðtÞ � yðtÞð Þdt þ rdBðtÞ;
where B(t) is the Brownian motion (BM). This process considers trait

adaptation to the environment through the parameter h(t), called the

optimum value of the trait, and whichmay vary over time. The param-

eter a ≥ 0 is the rate of adaptation. Equivalently, the phylogenetic half-

life, log (2)/a, is the amount of time it takes for the trait expected value

to reach halfway to the optimum value. If a � 0, or log (2)/a is much

larger than the time interval of interest (e.g. the tree height), then the

expected value of y(t) converges slowly to the optimum relative to the

observed time period. In this case, y(t) mostly varies around the ances-

tral state and theOUprocess reduces to a BM.

Throughout the paper, we assume a known phylogenetic tree for the

species of interest. We also assume that this tree is rooted, binary and

ultrametric. The OU process is assumed for the evolution of trait y

along each branch of tree, independently for the two daughter branches

of each node conditional on the trait value at that node. For simplicity

and identifiability of the model parameters, we assume that, although

unknown, a andr2 are fixed across the tree but that the optimum value

hmay vary across time and across branches in the tree.

We make further assumptions on changes in h(t) because its esti-

mation suffers from identifiability issues. Ho & An�e (2013, 2014a)

showed that a relatively small variation in h(t) cannot be distin-

guished with certainty from variation caused by the BM part of

the process, even with an infinite number of present-day species if

the tree height is bounded (for trees of growing height such as

from the Yule process, Adamczak & Miło�s 2015; An�e, Ho & Roch

2015; Bartoszek & Sagitov 2015). Ho & An�e (2014a) also showed

that the exact location and number of changes in the optimum

value, also called shifts, cannot be identified when these shifts are

on the same branch (see Fig. 1, left). Given these restrictions, we

assume that hðtÞ ¼ hb is constant along branch b, so that h is a

piecewise constant function from the root to any species (leaf). In

other words, we assume at most one shift on each branch, located

at the beginning of the branch if present. This parsimonious model

can still describe the effect of many shifts on each branch.

Evenwith this parsimonious assumption, the shift positions on a tree

can still be unidentifiable. For example, Fig. 1 (right) shows different

shift placements that all correspond to the same grouping of taxa and

would all receive equal likelihoods. We explain below (and prove in

Appendix S2, theorem 1) that ourmethod deals with this unidentifiabil-

ity, and automatically returns a parsimonious model in terms on num-

ber of shifts and shift magnitudes (in absolute values).

METHOD FOR ONE TRAIT (UNIVARIATE CASE)

Shift detection as a linearmodel selection problem

Under our assumption that there exists at most one shift at the begin-

ning of any given branch, the trait values at leaves follow this linear

model (see Appendix S1 for the full derivation):

Y ¼ b01þ XðaÞbþ e eqn 1
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where b0 is an overall mean (1 is a vector of ones). The b coefficients

contain the magnitude of the shifts in selection optimum, that is

changes in h values, one for each branch b in the tree: bb ¼ hb � hpðbÞ
where p(b) is the parent of b. The nonzero elements in b correspond to

the set of branches where h changes, that is, the shift positions. Follow-
ing Rabosky et al. (2014), we call this set of branches with shifts a ‘shift

configuration’. The designmatrixXðaÞ has n rows (number of taxa) and

p columns (number of branches) and depends on a. Define ab to be the

age of b’s parent node, that is, the distance from the parent node to its

descendant species. For taxon i and branch b,

X
ðaÞ
ib ¼ 1� e�aab if b is on the path from the root to taxon i

0 if taxon i is not a descendant of b

�
(see Appendix S1, for details). Correlations due to shared evolutionary

history are captured in the error e that follows a centred normal distri-

butionwith covarianceRðaÞ derived from theOUmodel:

where tij is the evolutionary time shared between species i and j, and dij

is their tree distance.

The linear regression (1) cannot be solved with ordinary least

squares for several reasons. First, XðaÞ has more columns (branches

with potential shifts) than rows (species with observations). Secondly,

the columns in XðaÞ are highly correlated, in particular because one

shift on a given branch is equivalent to two shifts of equal magni-

tudes located on each of the two daughter branches. Finally, the pre-

dictors in XðaÞ depend on the unknown adaptation rate, a. However,

if we restrict the set of hypothetical shifts and if we reduce XðaÞ to

these branches accordingly, then (1) may have a least-squares solu-

tion. We show that it is indeed the case if the shift configuration is

‘identifiable’, that is, if every hypothesized shift is ‘visible’ from at

least one taxon (more formally, see Appendix S2). The main problem

is then to select the shift configuration that best fits the data, among

all the identifiable shift configurations.

Regularization with lasso

To tackle the challenges outlined above, which come from the high-

dimension nature of the problem, the typical assumption is that only a

relatively small subset of predictors (here, shifts) describes the response.

In other words, we assume that b is sparse or that most shift magni-

tudes are 0. A commonway to achieve this is to consider the lasso prob-

lem (Tibshirani 1996) whose solution b̂ minimizes the following ‘1-

penalized least square criterion:

1

2
jjY� b̂01� Xb̂jj22 þ kjjb̂jj1 eqn 3

where k is a tuning parameter and the ‘1 norm of the shift magni-

tudes is simply the sum of their absolute values: ‘1ðb̂Þ ¼
P

b jb̂bj.
This penalty term causes many estimated shifts in b̂ to be zero,

which leads to selecting the most relevant features. By varying the

tuning parameter k from zero to ∞, we increase the weight of the

penalty and obtain b̂’s with support of size n shifts (no penalty) to

zero shifts (extreme penalty). Compared to an ‘2 penalty in

ridge regression, for instance, the ‘1 penalty has the advantage of

sparsity: where the estimated shifts are b̂b ¼ 0 exactly on many

branches.

The theory of the lasso is well explored (for instance B€uhlmann &

VanDeGeer 2011; Eldar andKutyniok, 2012). To guarantee statistical

selection consistency, small prediction error and uniqueness of the esti-

mate, various sufficient conditions were introduced on the sparsity of

the coefficient vector and coherency of the designmatrix (VanDeGeer,

B€uhlmann& et al. 2009). For instance, Zhao&Yu (2006) showed that

if (i) X satisfies the ‘irrepresentable condition’, (ii) e contains indepen-
dent random variables with finite variance, and (iii) k is chosen to have

the appropriate scale, then with high probability, the nonzero elements

of b̂ are identical to the nonzero elements of the true b. These results
allow for p to grow asymptotically faster than n, so long as the number

of nonzeros in b grows slower than n. Furthermore, different methods

based on convex optimization, combinatorial and greedy algorithms

were proposed to compute the exact or approximate solution. Efron

et al. (2004) showed an intuitive connection between the lasso and step-

wise selection solutions. They proposed the fast LARS algorithm to

find the lasso estimates b̂ thatminimize (3) at every value of k.

We now rewrite model (1) to derive an appropriate ‘1 penalty so as

to estimate a parsimonious shift configuration and to account for phy-

logenetic correlation. If this correlation was ignored, a straight ‘1 pen-

alty would bias shift detection in favour of large clades in the tree, for

which similarity might otherwise be explained by common ancestry.

We first consider the case when a is known, which implies that

(a) (b)

Fig. 1. The number and position of shifts on a

given branch cannot be identified. (a)On a sin-

gle branch, one shift at age t1 or one shift at

age t2 or two shifts at ages t1 and t2 lead to the

exact same model with means m, 0, 0 at the

leaves, provided that the shift magnitudes Dhi
(at ti) satisfy ð1� expð�at1ÞÞDh1 þ ð1� exp

ð�at2ÞÞDh2 ¼ m. (b) These four shift configu-

rations generate the same model, with shifts

denoted as stars (*). Each has three clusters of

tips sharing the same mean: {a}, {b}, and {c,
d, e}. The top right configuration is not parsi-

monious and cannot be returned by ‘1ou. The

other three configurations are all parsimo-

nious and may be returned by ‘1ou depending

on the data.

RðaÞ
ij ¼ r2e�adijð1� e�2atijÞ=ð2aÞ if the root value is fixed

r2e�adij=ð2aÞ if the root value has the stationary distribution

�
eqn 2
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X :¼ XðaÞ and the phylogenetic covariance R :¼ RðaÞ are known. To

remove phylogenetic correlation, we consider R�1=2Y, whose compo-

nents are uncorrelated, but whose mean is R�1=2ðb01þ XbÞ. There-
fore, our lasso estimate is the solution b that minimizes the following

‘1-penalized criterion:

1

2
jjR�1=2ðY� b01� XbÞjj22 þ kjjbjj1 eqn 4

Throughout the document, this will be referred to as the phylogenetic

lasso. We use the R package lars to solve this optimization problem for

all values of the tuning parameter k (see Fig. 2 for an example) (Efron

et al. 2004). An extra model selection phase is then required to find the

appropriate k and the corresponding estimated number of shifts.

Under some mild conditions and for every k, we prove in

Appendix S2 (theorem 1) that there is a unique solution b̂ minimizing

(4), and that the support of b̂ is an identifiable shift configuration. Fur-

thermore, in Appendix S4 we explain a linear algorithm to calculate

R�1=2 efficiently in linear time. This algorithm is based on the method

proposed by Stone (2011).

Model selection for the number of shifts

In traditional models with uncorrelated errors, tuning the penalty

weight k is typically done with tools such as cross-validation, minimum

expected information loss (AIC) or maximum model posterior proba-

bility (e.g. BIC, Schwarz, 1978). In our problem, cross-validation is not

appropriate since leaving out some taxa may erode small clades with a

shift, taking away part of the signal of interest. In surface, the following

criterion is used:

AICcðMkÞ ¼ �2 log likðMkÞ þ 2pþ 2pðpþ 1Þ
nm� p� 1

whereMk is the hypothesis that there are k shifts, likðMkÞ is the maxi-

mum likelihood of the best k-shift configuration, and m is number of

traits, all assumed to share the same shift configuration. Here

p = k + m(k + 3) is the number of parameters, counting the position

of each shift as one parameter, and k + 3 parameters specific to each

trait (shift magnitudes, b0, a and r). Ho & An�e (2014a) showed that

minimizing AIC leads to strong model overfitting, however. Therefore,

we adapt BIC to better estimate the model posterior probability in the

situationwhen errors are phylogenetically correlated.

The traditional BIC score ofMk can be defined as

BICðMkÞ ¼ �2 log likðMkÞ þ ðkþmðkþ 3ÞÞ logðnÞ

where again each shift location is counted as a parameter and k + 3

parameters are specific to each trait.

In Appendix S3 we show that a phylogenetic correction must be

applied to better approximate the marginal probability that the true

model has k shifts, leading to the following phylogenetic BIC form = 1

trait:

pBICðMkÞ ¼ � 2 log likðMkÞ þ 2k logð2n� 3Þ þ 2 logðnÞþ
log det X0ðâÞ

Mk
vRðâÞ�1

X
ðâÞ
Mk

� � eqn 5

whereX
ðaÞ
Mk

is the matrixXðaÞ reduced to the columns corresponding to

the k estimated branches with a shift but expanded with a column of

ones to include the intercept, and v is the observed trait variance. Infor-

mally, 2k log (2n�3) is the penalty term for the shift positions and

comes from approximating twice the log of the number of configura-

tions with k shifts, when the tree grows (n?∞). The penalty for the

shift magnitudes and the intercept is captured by the last term, which

appears when these parameters are integrated out with a non-informa-

tive flat prior. Interestingly, this penalty is not a simple function of the

number of parameters. The determinant term depends on a and more

importantly, on the location of the shifts through the structure ofX
ðaÞ
Mk

.

For instance, if a is infinite and if the configuration has two shifts that

separate the taxa into three distinct groups of sizes n1, n2 and n3, then

−2·52

*
−2·26

*

2·18

*

−2·45

*

2·38

*

0·48

*

−2·47

*

2·16

*

0·3

*

−1·08

*

−2·48

*

−0·78

*

1·92

*

0·06

*

−1·32

*
Fig. 2. Example of our lasso solution path. The number of estimated shifts depends on the penalty parameter, with 0 to 5 estimated shifts as k
decreases progressively from infinity to k = 3.07 (one estimated shift bb 6¼ 0), k = 3.31, 2.64, 1.92 and 1.73 (five estimated shifts). The shift configura-

tions are shown from left to right. Each estimated shift is indicated by a star and by its magnitude b̂b. Decreasing k further would further increase the
number of estimated shifts (at k = 1.09, 0.93 etc.) The sample data are shownwith the bar graph.
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the last penalty term is proportional to logðn1Þ þ logðn2Þ þ logðn3Þ,
just like in the modified BIC proposed by Ho & An�e (2014a). These

numbers of taxa ni are the effective sample sizes for the intercept and

shift values, that is the number of observations that effectively provide

information on these parameters (when a = ∞). This last penalty term

generalizes the effective sample size proposed in An�e (2008), to an OU

phylogenetic model with any number of shifts.

While pBIC is written here specifically for an OU process, it can

easily be applied to any process with k shifts in themean and any phylo-

genetic correlation structure, such as a BM process with jumps. To do

so,X
ðâÞ
Mk

in (5) needs to be the designmatrix controlling how shift coeffi-

cients affect the species means, RðâÞ the estimated phylogenetic covari-

ance, and 2 log (n) needs to be replaced by p log (n) where p is the

number of parameters for the phylogenetic covariance structure,

includingr2.

For multiple traits, 2k log (2n�3) appears only once to penalize the

shift configuration shared by all traits, but each trait contributes its

own 2 log (n) and determinant terms to penalize the trait-specific shift

magnitudes, b0, a andr.

In order to choose k, we compute the information criterion (BIC or

pBIC) for each shift configuration found by the lasso solution path,

and then, we pick the few top solutions (and their associated k). While

our phylogenetic lasso assumes a fixed a in (4), a is then optimized dur-

ing the likelihood and pBIC (or BIC) evaluation of each shift configu-

ration found by lasso. The columns of the design matrix in (4) can be

correlated, causing the lasso to pick groups with redundant shifts. To

drop these shifts, we add an extra ‘backward selection’ step: any shift

whose removal improves the information criterion is dropped. This

backward procedure is only performed for the best few models in the

solution path to obtain the final estimatedmodel.

Dealing with unknown phylogenetic covariance

Our prior assumption that the adaptation rate a is known is not realis-

tic. So we repeat the procedure twice, once with a conservative starting

value for a, and then again with an estimate of a informed by the shift

configuration found in the first round (see the outline below with all

steps)

We assume in the first round that a � 0, which leads to the greatest

level of phylogenetic correlation, that of a BM. This is conservative

because similarity among all species of a clade might be explained by

shared ancestry, rather than a shift at the base of the clade. However,

X(a) in (1) is degenerate when a = 0 (absence of adaptation to the

shifts), so we consider its linear approximation when a is small. Its non-

zero terms are 1� e�aab �aab, and this approximation is most accu-

rate for young branches (young age ab). Therefore, for our first round

with a � 0 we rewrite (1) as follows:

Y ¼ eXeb þ e eqn 6

where eXib ¼ ab if taxon i is a descendant of b, eXib ¼ 0 otherwise, andeb ¼ ab. The phylogenetic covariance for e is assumed to be Rð0Þ from
the BM. The phylogenetic lasso (4) is solved in this first round using eX
and Rð0Þ. As already noted by Hansen (1997), this multipeaked OU

process with a � 0 corresponds to a BM model with regime-specific

trends, with the trend coefficients estimated by eb here.

Recall that a is estimated through maximum likelihood during

the pBIC (or BIC) evaluation, separately on each candidate config-

uration, when tuning the lasso penalty k to do model selection.

This is performed with a linear-time algorithm in the R package

phylolm v2.2 (Ho & An�e 2014a, b). We then use â estimated from

the best shift configuration selected in the first round, as input to

the phylogenetic lasso (4) for a second round. Simulations show

that this second round improves the final estimates of the shift

positions. We summarize below these various steps of our method,

which we call ‘1ou + IC, where IC is any information criterion

(e.g. pBIC).

1. Find the solution path of the phylogenetic lasso (4) for a = 0 (BM

covariance), using the linear approximation forX(a).

2. Calculate â, b̂ that maximize the likelihood then calculate IC for

each candidate configuration on the path from step 1 (and some sim-

pler configurations, see previous section). Retain the configurationwith

the best IC.

3. Solve the phylogenetic lasso (4) using a ¼ â from the configuration

found in step 2.

4. Repeat step 2 but on the path of candidate configurations found in

step 3.

5. Retain the shift locations, â and b̂ from the configuration with the

best IC among those found in steps 2 and 4.

Detecting convergent regimes

An adaptation of the phylogenetic lasso can determine if some shifts

converge to the same optimal value in multiple parts of the tree, as

might be expected if different clades share a similar environment. After

shift locations have been estimated by ‘1ou, convergent evolution can

be detected byminimizing the following criterion

1

2
jjR�1=2ðY� b01� XbÞjj22 þ kjjMbjj1: eqn 7

This differs from the phylogenetic lasso (4) because it penalizes lin-

ear combinations of shift magnitudes, Mb. M is built so that each

row captures the difference in optimal value between two regimes in

the tree. To detect convergence among the first two shifts for exam-

ple, if the configuration estimated by ‘1ou was as in the left tree of

Fig. 3, M would include a row with entries ð1� e�aab1 Þ and

�ð1� e�aab2 Þ in the columns corresponding shifts 1 and 2, respec-

tively (ab is the age of a shift on branch b), and 0 entries otherwise.

In general, M has at most k(k�1)/2 rows if k shifts were detected by

‘1ou, but could have fewer rows because we do not need to test for

a convergence that would remove a single shift. Tibshirani & Taylor

(2011) provide a fast solution path algorithm to solve the generalized

lasso for an arbitrary M, implemented in the R package genlasso.

An information criterion can then be used to select the best model

(or k) along the solution path. For pBIC, the design matrix X
ðaÞ
Mk

is

reduced to the convergent model with one column per distinct opti-

mal value. This pBIC formulation is heuristic here (like AICc or

BIC) as our derivation of (5) assumed independent shifts.

METHOD FOR MULTIPLE TRAITS (MULTIVARIATE CASE)

Using multiple traits should increase the power and increase the

method’s robustness to detect shifts. An easy way to analyse multiple

traits is to reduce the data to just a few dimensions, such as with

principle component analysis (PCA), and separately analyse the first

few dimensions that explain most of the variance. Revell (2009)

demonstrated that PCA is misleading for phylogenetic data and pro-

posed phylogenetic PCA (pPCA) instead, which assumes a BM

covariance among taxa. Recently, Uyeda et al. (2015) showed that

both standard PCA and pPCA are biased, in that the top principal

components (PC) are most influenced by the traits varying early in

the tree. This bias suggests that false shifts might be detected near

the root of the tree if ‘1ou (or other shift detection methods) are

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 7, 811–824
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used on the first few PC axes. Indeed, this was confirmed in our sim-

ulations (see Fig. 7).

To extend our ‘1ou method to multiple traits, we assume that

traits shifted at the same time in the past, on the same branches in

the tree. In other words, we group the shift magnitudes for all traits

on a given branch together, and we seek to estimate a model where

either all shifts in a group are 0 (none of the traits shifted on that

branch) or most of the shifts in a group are not 0 (many of the traits

shifted on that branch). More formally, we assume (like in surface)

that the m traits arose from independent OU processes, each with its

own a and r2 parameters, but with shifts on a shared set of

branches. We write the m observed traits in a long vector Y of size

nm by stacking each trait on top of one another, and we collect the

trait-specific adaptation and variance rates in vectors a and r2. We

also write the shift magnitudes as a long vector b by stacking the

coefficient of each trait (bjb for trait j on branch b) on top of one

another, and we similarly stack the intercepts for all traits into a vec-

tor b0 of size m. The multivariate response model becomes

Y ¼ 11b0 þ XðaÞbþ e

where XðaÞ is a block diagonal matrix of size mn 9 mp with XðajÞ for
trait j on the diagonal, and 11 is similarly block diagonal with 11 as diago-

nal terms. The errors e are assumed to be phylogenetically correlated

with variance RðajÞ for trait j, but independent across traits. It means

that, conditional on knowing the true shifts, residual variation (e) is

uncorrelated between traits. If shifts are unknown however, traits are

correlated because they shift on the same branches. So in fact, we

assume that all the between-trait correlation (as could be estimatedwith

straight Pearson correlation coefficients) is due to correlation between

shifts.

Yuan & Lin (2006) proposed the group lasso to generalize the lasso

when there are predefined groups of coefficients. Here, each branch b in

the tree corresponds to a group of coefficients: ðbjbÞj�m across traits.

To capture the trend that all coefficients in a group are 0 (or not)

together, the group lasso uses the ‘1 penalty over groups, rather than

over individual coefficients:

X
branch b

kb:;bk2 ¼
X

branch b

X
trait j

b2jb

 !1=2

:

The jjb:;bjj2 acts as an ‘1 penalty on the group of shifts on branch b.

This group contains all of the shifts on branch b, for every one of the

traits. Because it acts as an ‘1 penalty on the group, this penalty selects

groups (here branches) to be either entirely zero or entirely nonzero. In

the special case when there is only one trait, this penalty reduces to the

earlier ‘1 penalty:
P

b jbbj. Using this group penalty, we consider the

followingmultivariate phylogenetic lasso

min
b

1

2
jjR�1=2ðY� 11b0 � XðaÞbÞjj22 þ k

X
b

jjb:;bjj2; eqn 8

where R :¼ RðaÞ is block diagonal with RðajÞ on its diagonal. We used

the R package grplasso for solving this group lasso step. Unlike LARS,

the search for the k values where the shift configuration changes is done
using a grid search, which can be slower.We then select k and the asso-

ciated shift configuration using the same ‘1ou procedure as before, sim-

ply replacing (4) by (8) in the lasso steps 1 and 3.

BOOTSTRAP SUPPORT FOR SHIFTS

To quantify uncertainty in the detected shifts, we use an adapted boot-

strap procedure, borrowing ideas from Freckleton & Harvey (2006)

(see also Pennell et al. 2015).

1. Use ‘1ou to estimate â and b̂. For each trait j, compute R�1=2
j and

R1=2
j in linear time, where Rj ¼ RðâjÞ

j is the phylogenetic correlation for

trait j. Then compute the vector of residuals for trait j:

Rj ¼ R�1=2
j ðYj � XðâjÞb̂j:Þ.

2. Repeat a very large number of times the following. For each

trait j, sample from Rj with replacement to create a bootstrap

sample of n residuals eRj. Use ‘1ou to estimate the shift configuration

and shift magnitudes from the bootstrap data witheYj ¼ XðâjÞb̂j: þ R1=2
j
eRj,
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Fig. 3. Tree with 60 taxa used in simulations to compare the accuracy of various methods. Data were simulated under the OUmodel with no shifts

or withmultiple shifts (left: 3, centre: 7, right: 17 shifts). The shift positions are annotatedwith stars and their simulatedmagnitudes.
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3. For each branch, calculate the bootstrap support for a shift on that

branch as the proportion of bootstrap iterations when a shift was

detected on that branch for one ofmore traits.

This procedure is expected to be conservative, because shifts that are

undetected in step 1 cannot receive high bootstrap support. An unde-

tected shift would just contribute one large residual, which would be re-

sampled and ‘scattered’ throughout the tree in the bootstrap resam-

pling step 2. Note that the bootstrap results from step 2 could be sum-

marized more thoroughly in step 3. For instance, on each branch with

a estimated shift, a bootstrap confidence could be obtained for themag-

nitude of this shift.

Simulations

SHIFTS IN ONE TRAIT

We used simulations to compare the accuracy of different

methods: ‘1ou combined with either pBIC, BIC or the same

AICc as used in surface (using its forward phase only to focus

on the shift configurations rather than the shift magnitudes),

bayou, and the stepwise selection method proposed by Ho &

An�e (2014a) . This stepwisemethod is capable of accepting var-

ious criteria, but we used here the ‘mBIC’ also proposed byHo

& An�e (2014a) . Bayou requires the user to choose a prior dis-

tribution for each model parameter, and the results are sensi-

tive to this choice. We made choices based on the true

parameters used to simulate the data: the number of shifts was

given a conditional Poisson prior distribution with mean the

true number of simulated shifts. A uniform prior was chosen

for a and r2 on [a � 0.5, a + 0.5] and ½r2 � 0:5;r2 þ 0:5�.
An empirical Bayes approach was taken for the shift magni-

tudes as in Uyeda & Harmon (2014), with a centred normal

prior distribution with standard deviation equal to twice that

observed in the tip data. Since bayou is a Bayesian method, it

returns a posterior distribution on shift configurations. To

summarize this distribution, we took a liberal approach and

said that a branch was detected to have a shift if the posterior

probability of a shift on that branch was 0.10 or greater. For

‘1ou methods, we used the random root covariance in (2). For

all methods, we set the maximum number of shifts to half the

number of taxa in the tree.

We simulated data sets under OU models along two differ-

ent phylogenies of flowering plants in the family Melastomat-

aceae, one with 60 taxa and one with 215 taxa using the

function rTraitCont in the R package ape (Paradis, Claude &

Strimmer 2004). The first tree (Fig. 3) is the consensus phy-

logeny from Kriebel, Michelangeli & Kelly (2015) pruned to a

single accession per species. It was small enough for all meth-

ods to run reasonably fast and was used to compare the meth-

ods’ accuracies. The second tree was simply used to sample

subtrees and compare themethods’ running times as a function

of tree size.

On the ‘small’ tree, we simulated traits under four different

configurations: either no shift, or 3, 7 or 17 shifts as shown in

Fig. 3. We used a = 1, corresponding to a moderate half-life

(0.69) compared to the tree height, which was set to 1 by rescal-

ing all branch lengths.We setr2 ¼ 2 to fix the stationary vari-

ance r2=ð2aÞ at 1. In the absence of shifts, we varied a while

keepingr2=ð2aÞ ¼ 1. In the presence of shifts, we instead var-

ied the shiftmagnitudes. Theywere first set to the values shown

in Fig. 3. They correspond to moderate magnitudes, just large

enough to be detected individually (if their phylogenetic posi-

tions were known) with non-negligible power (Ho & An�e

2014a), because means at the tips differ by about 1 stationary

standard deviation (bbð1� e�aabÞ � r=
ffiffiffiffiffiffi
2a

p ¼ 1). These shift

magnitudes were then all scaled by the same factor, varying

from 1 to 4, to create easier scenarios. For each condition, we

generated 200 replicate data sets with 1 trait each and esti-

mated the shift configuration using eachmethod.

To compare the methods’ accuracies, we first considered the

scenario with no shifts and calculated the number of false posi-

tives, that is the average number of detected shifts, necessarily

all false. Figure 4 (left) shows that ‘1ou + AICc and surface

(both using AICc) have many more false positives than the

othermethods.

Next, we considered scenarios with 3, 7 or 17 true shifts and

calculated the recall rate of each method (average proportion

of branches with a true shift that were detected as having a

shift) and precision (average proportion of detected shifts that

were true, that is located on a branchwith a true shift). Figure 5

shows that surface and ‘1ou with AICc are liberal methods:

both enjoy high recall rates (they find many of the true shifts)

but tend to have low precision (they also find many false posi-

tives). Given our liberal threshold to call a shift in bayou (PP

≥ 0�1), it is not surprising to find that bayou also has a ten-
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Fig. 4. Number of false positives for different

methods to detect shifts in the Ornstein–
Uhlenbeck (OU) process. One trait (left) or

four independent traits (right) were simulated

under a homogeneous OU model with no

shift.
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dency to be liberal, with high recall rates and low precision.

However, both performance measures tended to be lower for

bayou than for ‘1ou with AICc. On the other extreme, ‘1ou

was conservative when coupled with pBIC, enjoying the high-

est precision (the detected shifts were mostly true) but a low

recall rate (many true shifts were missed). When coupled with

BIC and on a single trait, ‘1ou provided an intermediate

approach, which might provide a good balance to reach a rea-

sonable precision with a reasonable recall rate. The phylolm

stepwise method based on mBIC performed consistently more

poorly than other methods. Its recall rate was among the low-

est, but its precision was always comparable or lower than that

or ‘1ou with pBIC, for instance. Figure 5 (right) also shows

that identifying 17 shifts on a 60-taxon tree is much more diffi-

cult than detecting three or seven shifts. The performance of all

methods went down significantly with 17 shifts. This is not sur-

prising, because each shift was visible by an average of 3�5
extant species, compared to 8�6 when there were only seven

shifts. Detecting the exact position of each shift is likely to be

much more difficult as the density of shifts increases within the

tree.

To compare themethods’ running time, we used a 215-taxon

plant phylogeny expanded fromKriebel, Michelangeli &Kelly

(2015) and randomly subsampled between 32 and 215 taxa to

obtain a smaller tree. For each tree size, we generated 2 repli-

cate data sets with a single trait, using a = 1, r2 ¼ 2 and a

true number of shifts that increased with the tree size (from

four shifts on 32 taxa to 26 shifts on 215 taxa). The maximum

number of estimated shifts was set for all methods to twice the

true number of shifts. We kept a constant number of 400000

generations in bayou, because it is unclear how this number

should be set to obtain a comparable mixing convergence

across tree sizes. However, good mixing is likely to require

more generations on large trees with large numbers of edges to

evaluate. Hence, the running time for bayou is likely to be

underestimated for large trees. All running times were obtained

with a 2�7 GHz processor. Figure 6 displays the average

elapsed time of each method, showing that previously pro-
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posed methods do not scale well to trees with a few hundred

taxa. On the other hand, ‘1ou is between one to two orders of

magnitude faster than the other methods, with no loss of accu-

racy.

SHIFT DETECTION FROM MULTIPLE TRAITS

We conducted two simulation experiments with multiple trait

data. First, we explored the effect of conducting standard PCA

to reduce the problem dimension, before detecting shifts on the

first PC axis only. Secondly, we explored the performance of

‘1ou and surface when applied tomultiple traits

We simulated data (100 replicates for each situation) under

the same 60-taxon tree as before (Fig. 3) except that each data

set contained m = 20 independent continuous traits simulated

under OUmodel. For our first experiment, the true model had

no shifts. We set a = 2, corresponding to a moderate half-life

0.34, and r2 ¼ 4 to fix the stationary variance at 1. Figure 7

shows the systematic error caused by using only the first PC,

that is the axis with the largest variation in the data. As

expected, some branches near the root are consistently detected

as having a shift. Even though we used the most conservative

method (‘1ou + pBIC) to analyse the first PC, at least one shift

was detected near the root in 65% of the replicates, on one of

the branches marked by a star. When using ‘1ou + BIC or

AICc, the occurrence of these false positives increased to 82%

and 89%.

Secondly, we considered the same tree as before with 0, 3, 7

or 17 true shifts but withmultiple traits (Fig. 3).We used a = 1

and r2 ¼ 2 and generated m = 4 independent traits under the

OU model. We chose four traits because this is representative

of a number of applications and because surface was too slow

to handle 20 traits formany replicates (about 1 h per replicate).

When no shifts were simulated, we further varied a keeping

the stationary variance r2=ð2aÞ ¼ 1. Figure 4 (right) shows

that all methods except ‘1ou +BIC had a few false positives. In

contrast to analyses with a single trait, ‘1ou + BIC appeared

as most conservative. We then repeated the same simulations

except that the four traits had residual correlation, either from

correlated drift or from correlated selection. This caused an

increase in the number of falsely detected shifts, for all methods

(Fig. S10).

In simulations with shifts, the magnitudes shown in Fig. 3

were multiplied by +1 or �1 randomly and independently for

each trait. They were then all scaled by a common factor as

before, varying from 1 to 4. Bayou and the phylolm stepwise

method were not applied since they cannot handle multiple

traits. As expected, using multiple independent traits improved

both the recall rate and the precision of all methods, compared

to using a single trait (Fig. 8). Like before, surface and ‘1ou +
AICc were very similar and were the most liberal methods and

pBIC tended to be the most conservative With 4 traits ‘1ou +
BIC was also very conservative. However, there were situa-

tions when the most liberal methods kept detecting false shifts

(precision capped around 50% with three true shifts and three

false shifts detected) even when the signal-to-noise ratio

increased (large shift magnitudes), while the most conservative

method reached both a recall rate of 100% and a precision of

100%.

We also evaluated the accuracy of shift detection when phy-

logenetic PCA is first applied to reduce the dimension of the

data, to detect shift positions by on each pPC axis separately.

For each data set generated above, we applied pPCA (assum-

ing a BMmodel as proposed by Revell 2009) and applied vari-

ous shift detection methods on the first axis. The multivariate

version of ‘1ou or surface on the original multivariate data

had a better or comparable recall rate and precision than the

samemethod applied to the single first pPC (Fig. S2).

Illustrationswith data onAnolis lizards

Anolis lizards on the Caribbean islands have independently

evolved a similar set of ‘ecomorphs’, such that species of the

same ecomorph category from different islands are similar

morphologically (Losos et al. 1998). Mahler et al. (2013) stud-

ied similarities among islands by considering 11 traits including

body size, limb and tail lengths, and adhesive toepad lamella

number across 100 species. They applied pPCA and retained

the first four axes, which together explained 93% of variation.

Their data and tree are available in the supplementarymaterial

of Mahler et al. (2013). We applied surface and ‘1ou + pBIC,

BIC or AICc to their four pPC traits, using the random root

covariance in (2) and allowing for a maximum of 50 shifts.

‘1ou + pBIC detected 12 shifts (in 13�8 min). Figure 9 shows

that each of these shifts is supported by several of the four

traits. Surface found 28 shifts (in 2 h and 12 min), which

include 11 of the 12 shifts detected here (Fig. S3). The one shift

** **

*

Fig. 7. Shifts detected by analysing the first standard principal compo-

nent using ‘1ou + pBIC. Data were generated under the BM model

(a = 0) with no shifts, r2 ¼ 4 and 20 variables. Pie charts show the

proportion of replicates for which a shift was detected on a given

branch (shaded area), on branches for which this proportion was 5%

or greater. Stars mark branches near the root and subtendingmoderate

or large bipartitions, wheremost false shifts tended to be detected.
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not detected by surface had the lowest bootstrap support

(39%). All other shifts had support between 69% and 100%.

The 28 shifts found by ‘1ou + AICc (in 13�2 min) included all

12 shifts found by ‘1ou + pBIC and were very similar to those

found by surface up to equivalent parsimonious configurations

(Fig. S4).With this many shifts, the one configuration returned

by ‘1ou + AICc (or by surface) is equivalent to many other

configurations that define the same clustering of taxa. There-

fore, this one configuration is masking a lot of uncertainty

about the shift locations. Because pBIC is quite conservative,

we can be more confident in its 12 shifts compared to the extra

16 shifts found by AICc or by surface. On these data, ‘1ou +
BIC was most conservative and did not detect any shift. Fig-

ure S5 shows the score profile plot of each method. For BIC,

this profile shows a local optimum in BIC at nine shifts, seven

of which were found by pBIC (Fig. S6).
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Of the 12 shifts detected by ‘1ou + pBIC, four occurred

within Cuba (or as a dispersal to Cuba), five within Hispan-

iola, two within Jamaica and only one with Puerto Rico (or

as a dispersal to Puerto Rico), based on a parsimonious geog-

raphy reconstruction (Fig. S7). Overall, our results suggest

that ecomorphological convergence is not as convincing sta-

tistically as previously argued. First, over half of the shifts

previously detected are suspected to be unreliable or mis-

placed. Secondly, two of the four islands only have one or

two confirmed shifts, weakening the statistical evidence for

repeated convergence on separate islands

When analysing the first trait only (pPC1, which alone

explained 40% of variation), fewer shifts were detected by all

methods, showing the gain in detection power from combining

multiple traits. Four shifts were detected with ‘1ou + pBIC, all

of which were also detected by ‘1ou +AICc, which detected 16

shifts total. Using the generalized lasso (7) + AICc on these 16

shifts, we detected a high level of convergent evolution with a

total of eight regimes only. In comparison, surface detected 12

shifts and five distinct optima, with some similarities but also

marked differences (Fig. S8). These two convergent evolution

models had very similar AICc scores however (�86�37 and

�86�40), highlighting great uncertainty about the exact phylo-
genetic placement of shifts and convergent evolution.

Discussion

In this work, we adapted the lasso, now widely used for stan-

dard statistical model selection, to phylogenetic comparative

data and the detection of shifts in themean. The lasso penalizes

parameters by their absolute values, which leads to sparse

models with most parameters estimated at 0. The OU process

that we used can model the response to a changing adaptation

landscape, to which the lasso provides a parsimonious

solution.

We also proposed a new phylogenetic criterion pBIC that

explicitly accounts both for phylogenetic correlation, and for

the large number of configurations with a given number of

shifts k. This number of models grows extremely fast with k,

leading to overfitting issues and high rates of falsely detected

shifts with AIC. On the contrary, pBIC was shown to be

conservative. Interestingly, the pBIC penalty for a k-shift

model is not a simple function of the number of parameters,

and/or of the number of configurations with k shifts (Mas-

sart 2007). The penalty depends on the best shift configura-

tion and generalizes the notion of a shift’s effective sample

size (An�e 2008). In particular, shifts leading to small clades

are penalized less than shifts leading to large clades, espe-

cially if phylogenetic correlation is low, because their effec-

tive sample size is smaller. Our ‘1ou method could be

combined with any further improvements to pBIC. Also,

pBIC can be generalized to other models with shifted means,

making it applicable to models with jumps derived from the

BM process for instance (see below).

Bastide, Mariadassou & Robin (2015) recently considered

the same problem and highlighted the same identifiability

issues on shift configurations. They derived the exact number

of non-equivalent (distinguishable) parsimonious configura-

tions of k shifts, which could depend on the tree topology. This

number, necessarily smaller than the number of ways to choose

k edges, could be used to improve our pBIC derivation (affect-

ing the term 2k log (2n�3)). To select k and for a single trait,

Bastide, Mariadassou & Robin (2015) used a criterion penalty

based on the number of distinguishable configurations, with

guaranteed properties if a is known. For one trait, the maxi-

mum likelihood configuration with k shifts is found with

Expectation-Maximization (Dempster, Laird & Rubin 1977),

which is probably more thorough but slower than our

approach.

A major strength of our phylogenetic lasso method is its

speed, being one or more orders of magnitudes faster than cur-

rently existing methods. Parallelization of our implementation

could further reduce its running time. This is because the set of

candidate models returned by the lasso can be evaluated for

pBIC in parallel; this second step is the computational bottle-

neck, consuming much more time than the first lasso step. To

achieve fast running times, we also implemented a linear-time

algorithm (Stone 2011), to obtain the square-root and inverse

square-root of the covariance matrix, RðaÞ. This fast algorithm
facilitates both the noise-whitening transformation for the

phylogenetic lasso and the bootstrap procedure here, but it

could have broader benefits for other applications. The matri-

ces R�1=2 and R1=2 are not unique (many matrices satisfy

A0A = Σ), and the matrices returned by the fast algorithm are

not symmetric, but they have an advantage of interpretability:

each row corresponds to an edge in the tree, including a root

edge. Therefore, they provide phylogenetically corrected resid-

uals that map onto the phylogenetic tree. Their applications

include model diagnostics and visualizations (Pennell et al.

2015) with possible interpretation as to the cause of potential

model violations. Here, phylogenetically corrected residuals

might be used to detect possible model violations that might

correlate with shift configurations.

Our bootstrap procedure, which uses both R�1=2 and R1=2,

is comparable to the fully parametric bootstrap method used

by Ingram & Mahler (2013) for surface. Our method is par-

tially nonparametric, however, in that we resample the phylo-

genetically corrected residuals instead of sampling from the

OU process, to gain some robustness to potential violation of

the OU model assumptions. The results from such bootstrap

procedures should be interpreted with caution, however,

because they can depend heavily on the shifts simulated under

the bootstrap model. If this model only uses the shifts

detected conservatively with pBIC, then any true shift that

went undetected will necessarily receive low bootstrap sup-

port. On the lizard data for instance, adding an extra two

shifts to the pBIC configuration increased the pBIC score by

4�99 only, but resulted in greatly increased bootstrap support

for the newly added shifts (from close to 0% to 63% and

62%, see Fig. S9). It might be advantageous to use the shifts

detected with a more liberal criterion (AICc) in the bootstrap

simulation model, but analyse the bootstrap data sets with a

conservative criterion (pBIC). Hence, these bootstrap values

should be interpreted with caution, and more work is needed
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to improve parametric bootstrap methods here, when model

selection is involved.

For shifts located on neighbouring edges, extra caution

should be taken because of identifiability issues. For instance,

the data contain no information on whether a shift is at the

base on the ingroup clade vs. the outgroup clade (i.e. on either

edge connecting to the root). Even if the bootstrap support for

a shift is 100% at the base of the ingroup clade, the user should

keep in mind that there is still complete uncertainty about the

exact placement of this shift on either side of the root, or its

timing along either edge. Similarly, shifts detected on two sister

clades should be interpreted with caution, even if each one

receives 100% bootstrap support. The exact same data could

be obtainedwith a shift on the edge ancestral to these two sister

clades, and only one subsequent shift to one of the clades.Here

again, the 100% bootstrap values ignore uncertainty due to a

lack of identifiability. Bayesian methods can deal with this

issue much more elegantly (Uyeda & Harmon 2014), because

one might place equal prior probabilities on all the non-distin-

guishable shift configurations. Posterior probabilities would

reflect uncertainty between all these configurations, even

uncertainty on the location of a shift along a given edge. Non-

identifiable shift configurations might also have different pos-

terior probabilities because their shared maximum likelihood

might be achieved at different shift magnitudes, which are not

necessarily equally likely a priori. Therefore, a Bayesian frame-

work can distinguish between non-idenfiable shift configura-

tions using biologically reasonable priors on shift magnitudes.

Also, even though the posterior mean number of shifts

depends on the prior number of shifts, Bayesian posterior dis-

tributionsmight quantify uncertainty over the various configu-

rations with a fixed number of shifts better than bootstrap

samples (see also visualization tools in Rabosky et al. 2014).

This is because bootstrap samples are generated under a

unique bootstrap simulation model, from the best estimated

shift configuration only. More work could still be done to

improve frequentist bootstrap procedures or other ways to

quantify uncertainty, for the detection of phylogenetic shifts.

The lack of identifiability between different shift configura-

tions is because the data truly bear on the clustering of taxa

into groups. If there is evidence that two sister clades and their

outgroup taxa make three different clusters each with its own

adaptive optimum, then we might be able to estimate these

three clusters with very high confidence. However, there will

still remain complete uncertainty (without fossil data) to know

how many adaptive shifts occurred, at the base of which clade

they occurred, and at what time. Therefore, the proposed

method should be treated as an estimation of phylogenetically

consistent clusters, rather than exact shift positions.

In many applications, the underlying data are truly on a

continuous scale but are discretized to facilitate analysis or

to provide a taxonomic description. For instance, moss spo-

rangium shape (Rose, Kriebel & Sytsma 2016) might be

described as either ‘round’ or ‘linear’, with some subjectivity

involved when scoring intermediate species, or training

needed to achieve consistent scoring between different obser-

vers. For the purpose of defining thresholds to categorize

continuous measurements into discrete values, our method

would provide an objective and phylogenetically aware

method. A liberal model selection criterion like AICc would

be recommended, to detect sufficiently many categories and

to prioritize the influence of the trait data over the species

phylogenetic placement.

For the purpose of categorizing a continuous variable or

for the study of adaptation, an interesting next step is to

detect convergence, when different shifts lead to the same

selective optimum value. For one variable, we used the gen-

eralized lasso to penalize differences between pairs of optima

(Tibshirani & Taylor 2011). However, more work is needed

to adapt pBIC, to correctly integrate out the constrained

shifts and to account for the number of convergent configu-

rations with k shifts. For multiple traits, the ideas of the gen-

eralized and group lasso could be combined in an ‘1 penalty

that favours convergent regimes shared by all traits. But fur-

ther work is needed because there is no fast algorithm for

this form of penalty yet.

Extending our method to account for residual correlation

between traits would be desirable. Simulations showed that

none of the available methods are robust to the presence of

correlation among traits due to drift (Fig. S10), with a marked

increased of falsely detected shifts. Models for correlated traits

could also combine primary response variables with potential

predictors into one multivariate variable, to model variation in

the response explained by shifts as well as predictors (Hansen,

Pienaar & Orzack 2008; Bartoszek et al. 2012). However, fit-

ting phylogenetic multivariate OUmodels with arbitrary selec-

tion and drift covariance matrices is difficult computationally

(e.g. Clavel, Escarguel & Merceron 2015), and new theory

would be needed for these models, to select the appropriate

number of shifts.

Another extension of our method would be to move away

from the OU model with discontinuous jumps in the adap-

tive optimum but continuous trait evolution. For example,

the OU model leads to the same trait distribution on pre-

sent-day taxa as a BM punctuated by jumps causing discon-

tinuity in the process (at an evolutionary time-scale),

provided that branch lengths in the tree are rescaled depend-

ing on a (Ho & An�e 2014). If the OU model leads to unrea-

sonably large shifts in optimal values, a BM model might

provide jumps that are more reasonable biologically, even

though the two models are statistically equivalent. This is

likely to occur when phylogenetic correlation is high (low a,
or slow adaptation), in which case the OU model needs an

unreasonably large shift in the adaptive optimum to explain

a moderate jump in the observed mean. While the OU

model is statistically equivalent to a process with jumps, our

lasso and pBIC in (5) both penalize the magnitude of shifts

in the adaptive optima, rather than the magnitude of jumps

in the observed means. Hence, our model and implementa-

tion would need to be adapted to BM evolution with jumps

to penalize changes in observed means rather than in adap-

tive shifts, through an adaptation of XðaÞ and of the phylo-

genetic covariance. Further work could also extend this BM

model with jumps to allow for an unknown level of phylo-
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genetic correlation, using an extra parameter like Pagel’s k
(Lynch 1991; Pagel 1999) and a similar approach to vary k
(instead of a) across different runs of the lasso.
Finally, extending our method to account for measurement

error should be easiest when multiple measurements are avail-

able per species, using the observed standard errors of species

means as in Ives, Midford & Garland (2007). Doing so could

be most beneficial if two very closely sister species have quite

different trait values, in the range ofmeasurement error. A spu-

rious shift to one of the two sister species might be needed to

explain the trait difference if measurement error is ignored,

with a possibly overestimated a (underestimated phylogenetic

correlation).
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