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Abstract  This paper provides an overview and a tutorial of the BPP program, which is a Bayesian MCMC program for analyz-

ing multi-locus genomic sequence data under the multispecies coalescent model. An example dataset of five nuclear loci from the 

East Asian brown frogs is used to illustrate four different analyses, including estimation of species divergence times and popula-

tion size parameters under the multispecies coalescent model on a fixed species phylogeny (A00), species tree estimation when 

the assignment and species delimitation are fixed (A01), species delimitation using a fixed guide tree (A10), and joint species de-

limitation and species-tree estimation or unguided species delimitation (A11). For the joint analysis (A11), two new priors are in-

troduced, which assign uniform probabilities for the different numbers of delimited species, which may be useful when assign-

ment, species delimitation, and species phylogeny are all inferred in one joint analysis. The paper ends with a discussion of the 

assumptions, the strengths and weaknesses of the BPP analysis [Current Zoology 61 (5): 854–865, 2015]. 
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1  Introduction 

1.1  Overview of bpp 
BPP (for Bayesian Phylogenetics and Phylogeogra-

phy) is a Bayesian Markov chain Monte Carlo (MCMC) 
program for analyzing DNA sequence alignments under 

the multispecies coalescent model (MSC) (Rannala and 
Yang, 2003; see also Takahata et al., 1995; Yang, 2002). 

The MSC model lies at the interface of molecular phy-
logenetics and population genetics. Compared with tra-

ditional phylogenetic analysis, which assumes that the 

same tree underlies all gene loci, the MSC accounts for 
the coalescent process in both the modern and ancestral 

species and the resultant gene tree-species tree conflicts. 
Thus a reliable estimation of the species phylogeny is 

possible even if the information at every locus is weak 

so that the gene tree is highly uncertain (Heled and 
Drummond, 2010). Edwards (2009) has argued that 

species tree estimation under the MSC represents a pa-
radigm shift in molecular phylogenetics. Compared 

with traditional population genetics models (in particu-
lar models of population subdivision), MSC accounts 

for the phylogenetic history of the species or popula-

tions. For many datasets, this is more realistic than an 
equilibrium model of population subdivision and migra- 

tion. The MSC provides a natural framework for ad-
dressing a number of important problems in evolutio-
nary biology, such as species delimitation (Yang and 
Rannala, 2010; Rannala and Yang, 2013), species tree 
estimation (Edwards et al., 2007; Liu and Pearl, 2007; 
Heled and Drummond, 2010), and detection of hybridi-
zation and contamination. See Fujita et al. (2012) and 
Carstens et al. (2013) for reviews on species delimita-
tion methods using genetic sequence data. A critical 
assessment of the strengths and weaknesses of those 
methods is provided by Rannala (2015). Liu et al. (2015) 
reviewed methods for species tree estimation in the 
presence of conflicting gene trees.  

The MSC has been extended to account for migration 
between populations (Hey, 2010) and recombination 
along the sequence (Hobolth et al., 2007). Here in this 
paper we focus on the basic MSC model. The model 
includes two types of parameters: the species diver-

gence times (s) and the population size parameters for 

both modern and ancestral species (s). Here we use the 
example of East Asian brown frogs in the Rana chensi-
nensis species complex to illustrate the model (Fig. 1). 
There are four populations or species: represented as K, 
C, L, and H. If the phylogeny is ((K, C), (L, H)), as 
shown in Fig. 2A, there will be three species diver- 
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gence times (KC, LH, and KCLH) and seven population 

sizes (K, C, L, H, KC, LH, and KCLH). In general, 
for a species tree of s species, there will be s – 1 diver-
gence time parameters and at most 2s – 1 population 
size parameters in the MSC model. Note that two se-
quences are needed to calculate a distance, so that if 
there is no or only one sequence from a population at 

every locus, it will not be possible to estimate the  pa-

rameter for that population. Both s and s are meas-
ured by the sequence distance or the expected number 

of mutations per site. In particular,  = 4N, where N is 

the (effective) population size and  is the mutation rate 

per site per generation, so that K = 0.002 in figure 2b 
means that two sequences taken at random from popu-
lation K have 2 differences per kilobase. Note that it 
takes on average 2N generations for two sequences tak-
en at random from a population to coalesce (to find their 
common ancestor), so that the distance between the two 

sequences is 2N    2 = . 
Four types of analysis are possible by BPP, referred to 

in this tutorial as A00, A01, A10, and A11. These are 
specified using two variables (switches) in the control 
file: speciesdelimitation and speciestree. 
The four analyses are summarized in table 1. 

Note that analysis A00 is a within-model inference, 
and its objective is to generate the posterior distribution 

of the parameters (s and s) under the MSC model. 
The MCMC algorithm implemented in the BPP program 
for this inference appears to be fairly efficient and has  

been applied to genomic datasets consisting of ~50,000 
loci (Burgess and Yang, 2008). The other three analyses 
(A01, A10, and A11) are transmodel inferences (in the 
terminology of Green, 2003), in which the Markov 
chain moves between different models. Each of those 
models is an instance of the MSC model, but the num-
ber and nature of the species and the species phylogeny  

 

 
 

Fig. 1  Brown frogs from the C and L clades of R. chensi-
nensis and a map showing the geographical distributions 
of all four clades of East Asia brown frogs 
Clades C and L of R. chensinensis, clade K (R. kukunoris) and clade H 
(R. huanrensis). Photos courtesy of Dr Hui Zhao, Institute of Biology, 
Chinese Academy of Sciences, Chengdu, China. 

 

 
 

Fig. 2  Analysis A00 
A. A species tree for four brown frog species/populations K, C, L, and H, illustrating the parameters in the multispecies coalescent model. Those 
include three species divergence time parameters () for the three ancestral nodes, 5 (KCLH), 6 (KC), and 7 (LH), and seven population size para-
meters (s) for the seven populations on the tree. B. Estimates (posterior means) of the parameters obtained from analyzing the sequence data at five 
nuclear loci. Both s and s are measured by the expected number of mutations per kilobase. The priors used in the analysis are  ~ G(2, 1000) for 
all populations and KCLH ~ G(2, 2000) for the root age. The node bars represent the 95% HPD intervals for divergence times. The tree is drawn with 
FIGTREE using the BPP output. 
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Table 1  Four analyses implemented in bpp and illustrated in the tutorial (A00, A01, A10, and A11) 

Speciesdelimitation 
Speciestree 

0 1 
   

0 A00. Estimation of parameters under the multispecies coa-
lescent model (s and s) when the species phylogeny is 
given (Yang, 2002; Rannala and Yang, 2003). 

A01. Inference of the species tree when the assignment 
and delimitation are given (Rannala and Yang, ms. in 
preparation) 

   

1 A10. Species delimitation using a fixed guide tree (Yang 
and Rannala, 2010; Rannala and Yang, 2013). 

A11. Joint species delimitation and species-tree infe-
rence or unguided species delimitation (Yang and Ran-
nala, 2014). 

 
may differ among those models. The main objective of 
the transmodel inference is the calculation of the post-
erior probabilities for the different models. We have 
found cases in which the Markov chain mixes poorly in 
the transmodel algorithms. The mixing problem is dis-
cussed later. 
1.2  Running the bpp program 

Detailed information about downloading and com-
piling the BPP program is provided at the program web 
site and in the program manual (bppDOC.pdf). Here we 
go through the basic steps, but the manual should be 
consulted for more details. The manual also explains the 
format of the data files, the screen output, as well as the 
output files. 

Download BPP from the web site http://abacus.gene. 
ucl.ac.uk/software/. The current version is 3.1, which 
we will use here. The archive includes Windows execu-
tables and ANSI C source files. For UNIX/LINUX or MAC 

OSX, you need to compile the program first. For exam-

ple, the following command uses the compiler gcc to 

generate the executable bpp. 
gcc -o bpp -O3 bpp.c tools.c -lm 
In the tutorial below, we will use a dataset of five 

nuclear loci from the East Asia brown frogs (Zhou et al., 

2012). The sequence alignment (frogs.txt) and the 

Imap (frogs.Imap.txt) files, as well as the control 

files for the four analyses, are in the folder frogs in 

the BPP release.  
We will run BPP from the command line, although 

you may use the BPPX interface (written by Bo Xu). If 
you have not used the command line before, please 
work through one of the following tutorials first: 

http://abacus.gene.ucl.ac.uk/ziheng/CommandLine.W
indows.pdf; 

http://abacus.gene.ucl.ac.uk/ziheng/CommandLine.M
ACosx.pdf. 

We will run each analysis twice in two folders, r1 

and r2 inside the frogs folder. Start two command-line 

terminals. Then change directory to r1 (or r2), and run 

the program as follows. 

On Windows 
cd frogs\r1 
..\..\bpp ..\A00.bpp.ctl

On LINUX/UNIX/MAC OSX 
cd frogs/r1 
../../bpp ../A00.bpp.ctl

 
Here A00.bpp.ctl (in the frogs folder) is the 

control file for analysis A00 (Fig. 3). To run the other 
three analyses, replace A00 with A01, A10, or A11. 
Note that in the control file (Fig. 3), the data file is spe-
cified as ../frogs.txt instead of frogs.txt, be-
cause the file is in the frogs folder while we run BPP in 
the frogs/r1 folder.  

The run will produce an MCMC sample file (mcmc. 
txt), which is summarized by BPP. The output (out. 
txt) should be self-explanatory, but see the manual for 
detailed explanations. Running the same analysis mul-
tiple times allows us to confirm that the results are sta-
ble across runs. You may also merge the two samples 
into one and summarize the combined sample: Append 
one file to the end of the other (and remove the header 
line of the second file if it exists). Then run BPP with 
print = -1. 

2  The Example Dataset of East Asian 
Brown Frogs  

We use the five nuclear loci from East Asian brown 
frogs in the Rana chensinensis species complex (Zhou 
et al., 2012). Three morphologically recognized species 
exist in this group: R. chensinensis (clades C and L), R. 
kukunoris (K) and R. huanrensis (H). R. chensinensis 
has a widespread distribution in northern China. R. ku-
kunoris occurs on the eastern edge of the Qinghai-   
Tibetan Plateau, while R. huanrensis has a limited dis-
tribution in Northeast China and Korea (Fig. 1). Those 
geographical areas have very different climates and 
correspond to different ecological habitats. Divergences 
of those species have been hypothesized to coincide 
with tectonic and climatic changes associated with the 
uplifting of the Qinghai-Tibetan Plateau (Zhou et al., 
2012). 

Zhou et al. (2012) conducted a phylogenetic analysis 
of an extensive sample of a mitochondrial locus (cyt b).  
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Fig. 3  Control file A00.bpp.ctl for analysis A00 (with speciesdelimitation = 0 and speciestree = 0) 
This is set up so that the BPP program is launched in the folder frogs\r1, while the sequence and Imap files are in the folder frogs. The total number 

of MCMC iterations is burnin + nsample  sampfreq = 208 000. Note that lines starting with an asterisk are comments and the default values 

of speciesdelimitation and speciestree are 0. 

 

The maximum likelihood tree corresponds very well 
with the geographical distribution of the species with two 
exceptions. First, the analysis identified four major clades 
instead of three species, with R. chensinensis split into 
clade C from the type locality and clade L from the 
Loess Plateau. The two clades may represent two dis-
tinct species. Second, some individuals of R. chensinen-
sis from the western Qinling Mountains form a subclade 
within R. kukunoris on the mitochondrial tree, while 
morphology and nuclear loci suggest they belong to the 
C clade. This appears to be a case of mitochondrial in-
trogression from R. kukunoris into R. chensinensis. 

In the tutorial below, we use BPP to analyze the five 
nuclear loci for a subset of the samples sequenced by 
Zhou et al. (2012) to represent the major lineages on the 
mitochondrial tree. The loci are RAG-2 (440 bp, 28 
sequences), Tyr (455 bp, 28 sequences), BDNF (457 bp, 
30 sequences), POMC (285 bp, 24 sequences) and PG 
(489 bps, 21 sequences). The sequences are assigned to 
the four populations K, C, L and H. Three R. chensinen-
sis samples apparently represent mitochondrial intro-
gression and are thus assigned back to clade C in our 
analysis of the nuclear loci (Zhou et al., 2012).  

Each analysis here takes three input files: the control 

file (e.g., A00.bpp.ctl), the sequence alignment file 

(frogs.txt) and the Imap file (frogs.Imap.txt), 

with the latter two files specified in the control file. The 
sequence alignments are in the PHYLIP/PAML format, 
with one alignment following the other, all in one file. 
Alignment gaps and ambiguity nucleotides are either 

deleted before analysis (cleandata = 0) or used in 

the likelihood calculation (see Yang, 2014, pp. 111-2). 
The Imap file assigns individuals or sequences to the 

populations. In the sequence data file, each sequence 
name has a tag (indicated by ^) which is interpreted as 
an individual ID and used in the Imap file to assign the 
sequence to a population. For example, the sequence 
name ^kiz1375 in the sequence data file has the tag 
kiz1375, which is used in the Imap file to assign speci-
men kiz1375 to population C. Thus through the Imap 
file, each sequence is assigned to a population. All 
models currently implemented in BPP use the population 
ID for each sequence but ignore the individual ID; for 
example, information in linkage disequilibrium among 
loci is ignored. One could tag each sequence by the 
population ID to avoid the need for the Imap file. How-
ever, the current setup allows one to change the assign-
ments easily without editing the large sequence data file. 

3  The Tutorial 

In this tutorial, we conduct all four analyses listed in 
Table 1: A00, A01, A10 and A11. We run each analysis 
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at least twice (in r1 and r2, inside the frogs/ folder). 

With 208,000 (= burnin + nsample  sampfreq) 

iterations, each run took about 10 minutes on a laptop. If 
the results look too different between runs, we re-run the 
program using a larger number of samples (nsample) 

and/or larger sampling frequency (sampfreq) (Fig. 3). 

There are standard tools for diagnosing convergence 
and mixing problems of MCMC algorithms (Robert and 
Casella, 2004, pp.459–510; Yang, 2014, pp. 226–244). 
For running BPP, our experience suggests that running 
the same analysis multiple times appears to be the most 
effective method to guarantee the reliability of the re-
sults. There are no hard rules for deciding how large a 
difference between runs is too large, so common sense 
is advised. The main objective of analyses A01, A10, 
and A11 is to calculate the posterior probabilities of 
models. It is advisable to calculate those to the percen-
tage point (e.g., 71%), but it may not be necessary to 
calculate them to the first decimal point (e.g., 70.9%). 
Similarly analysis A00 generates the posterior distribu-
tion of the parameters under the MSC. A 1% or 5% rel-
ative error in the posterior means or in the posterior 
interval limits may be precise enough; for example, 

0.0020, as an estimate of the posterior mean of K ac-
curate to the fourth decimal point, may be precise enou-
gh and there is no need to calculate it to 0.00196 (Fig. 
2B). Such choices of course depend on the computing 
resources available, the absolute running time, etc. In 
this regard, note that the variance of the estimate of the 
posterior model probability based on an MCMC sample 
of size N is P(1 – P)/(NE), where P is the true posterior 
model probability, and E is the efficiency of the MCMC 
sample (see, e.g., Yang, 2014, p.214). Note that the es-
timate based on an independent sample has the variance 
P(1 – P)/N and such an estimate has efficiency E = 
100%. Similarly, the variance of the posterior mean of a 
parameter based on an MCMC sample of size N is 

/(NE), where /N is the variance based on an indepen-
dent sample. In both cases of calculating posterior mod-
el probabilities (A01, A10, and A11) and estimating 
model parameters (A00), the variance is proportional to 
1/N. Thus to reduce the standard error of the estimate by 
a half one has to increase the MCMC sample size by 
four folds; or to increase the number of significant digits 
by one (or to increase the estimation precision by 10 folds) 
one has to increase the MCMC sample size by 100 folds. 
3.1  Analysis A00: Parameter estimation under the 
multispecies coalescent 

This analysis (with speciesdelimitation = 0, 

speciestree = 0) generates the posterior distribu-

tion of species divergence times (s) and population 

sizes (s) under the MSC model when the species phy-

logeny is fixed. As noted above, parameters s and s 
are the products of time and mutation rate. The se-
quence data provide information about distances only, 
so that time and rate are confounded. If external infor-
mation is available concerning the mutation rate or if 
fossil information can be used to calibrate the ages of 

nodes on the species tree, the estimates of s and s can 
be converted into estimates of absolute species diver-
gence times and absolute population sizes (see, e.g., 
Burgess and Yang, 2008). Such an analysis under the 
MSC accommodates ancestral polymorphism and the 
coalescent waiting times in the ancestral species and 
may be advantageous over traditional molecular clock 
dating (Angelis and dos Reis, 2015). In the case where a 
fossil calibration is available for the root of the species 
tree (in the form of sharp minimum and soft maximum 
bounds, say), Angelis and dos Reis (2015) discuss a 
strategy of sampling from the prior calibration distribu-
tion to generate posterior estimates of species diver-
gence times and population sizes as well as the mutation 
rate.  

Run the program as follows. 
 
cd frogs\r1 
..\..\bpp ..\A00.bpp.ctl  
 

The control file A00.bpp.ctl is shown in Fig. 3. 

Here clades C and K are treated as distinct species, and 
the fixed species phylogeny is ((H, L), (C, K)). This is 
the most favoured model in the analysis below although 
we note that the phylogeny is highly uncertain. The pa-
rameters in the model are defined in Fig. 2A. We assign 

a gamma prior G(2, 1000) for all  parameters, and 0 ~ 
G(2, 2000) for the age of the root, while the other di-
vergence time parameters are assigned the uniform Di-
richlet prior (Yang and Rannala, 2010: equation 2). The 

prior  ~ G(2, 1000) has the mean 2/1000 = 0.002, 
which means 2 differences per kilobase between two 
sequences sampled at random from the population. Si-

milarly the prior KCLH ~ G(2, 2000) has the mean 0.001, 
which means that the sequences at the root and a tip of 
the tree have one difference per kilobase. The uniform 

Dirichlet prior for the other s then means that given 

KCLH, the ages KC and LH are uniform in the interval 

(0, KCLH).  
The gamma priors. In BPP, gamma priors are used on 

s and . A gamma distribution is specified as G(, ), 

with shape parameter  and rate parameter , and with 
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mean / and variance /2. The shape parameter  

specifies how informative the prior is, with  = 1, 1.5 or 
2 representing diffuse priors, while values like 10, 20, 
and 100 represent informative priors. There are no de-

fault priors for parameters  and  in BPP, and the priors 
should be chosen to suit the dataset being analyzed. One 

way of specifying the gamma prior is to choose  de-
pending on how much information one has about the 

parameters and then to choose  so that the prior means 

are in the right neighbourhood. Here we use  = 2 to 
have a diffuse prior. Rough estimates of the parameters 
can be generated by a preliminary run. For example, if 

we use the priors  ~ G(2, 500) and KCLH ~ G(2, 500), 

both with mean 0.004, most of the posterior means of s 

are <0.004, and that of KCLH is around 0.001, suggest-
ing that those prior means are too large. In contrast, if 

we use the priors  ~ G(2, 2000) and KCLH ~ G(2, 2000), 

both with mean 0.001, the posterior means of all s 

are >0.001, suggesting that the prior mean for s is too 

small, and the posterior mean of KCLH is around 0.0007, 

suggesting that the prior mean for KCLH is slightly too 
large.  

Note that the prior is supposed to represent our in-
formation about the parameters before the analysis of 

the data. It is thus incorrect to fit the gamma distribution 

to the posterior sample and use the resulting gamma 
distribution as the prior. Here we have chosen to use a 

diffuse prior (with shape parameter  = 1 or 2), and the 

preliminary runs are used to ensure that the prior means 

are reasonable for the data.  

In specifying the gamma priors, it may also be useful 
to plot the gamma density and calculate the 95% prior 

interval. The following R commands plot the gamma 
density G(2, 2000) and calculates the 95% prior interval 

to be (0.00012, 0.00279). 
 

a=2; b=2000; 
curve(dgamma(x, a, b), from=0, to=0.01) 
qgamma(c(0.025, 0.975), a, b) 
 

Edit the control file to use usedata = 0. This sets 

the sequence likelihood to 1 whatever the parameter 
values, so that the MCMC will generate a sample from 
the prior. Confirm that the means calculated by BPP are 

0.002 for all s, 0.001 for KCLH, and 0.0005 for both 

KC and LH, as specified in the priors.  

Then edit the control file to use usedata = 1 and 

rerun the program to sample from the posterior. The 

MCMC sample file (mcmc.txt) from this analysis can 

be read into R or Tracer to plot the estimated posterior 
densities. (Note, however, that the sample files from the 
other analyses A01, A10 and A11 are not readable in 
TRACER.)  Here we use the summary provided by BPP. 
The output should be self-explanatory, and is summa-
rized in Fig. 2B. The posterior means of the divergence 

times (s) are used to draw the branches of the tree, 
which also shows the 95% highest probability density 
(HPD) intervals as node bars. The posterior means of 

the population size parameters (s) are shown along the 
branches, which range from 0.0016 to 0.0042. Overall, 
the parameter estimates have large intervals, indicating 
that the information content in the five nuclear loci is 
quite low.  

The reader may wish to examine the sensitivity of the 
posterior estimates to the priors by changing the para-

meters in the prior, for example, by using  ~ G(2, 100) 

and  ~ G(2, 200), with the prior means to be ten times 
as large. The prior means are expected to have more 
impact than the shape parameters. 

Note that the MSC model assumes that the samples 
are taken at random from each population or species. 
Thus all sequences generated should be included in the 
analysis even if some of them are identical. It is incor-
rect to use the distinct haplotypes only, as removal of 
the identical sequences leads to overestimates of the 

parameters (s and s).  

3.2  Analysis A01: Species tree estimation  

This analysis (with speciesdelimitation = 0, 

speciestree = 1) infers the species tree, assuming 

that the assignment and species delimitation are fixed. 
Based on the MSC, the analysis accounts for polymor-
phism in the ancestral species and the resultant gene 
tree-species tree conflicts. It also accommodates the 
uncertainties in the gene trees due to limited phyloge-
netic information at each locus. BPP uses the nearest 
neighbor interchange (NNI) or subtree pruning and re-
grafting (SPR) algorithms to change the species tree 
topology in the MCMC (Yang and Rannala, 2014). We 
run the program as follows.  

 

cd frogs\r1 
..\..\bpp ..\A01.bpp.ctl  
 

Bayesian species tree estimation is essentially a 
model selection analysis since different species phylo-
genies are different statistical models. Thus we have to 
specify prior probabilities for the compared models 
(species trees). Two priors are implemented in BPP for 

this analysis. Prior 0 (speciesmodelprior = 0) 
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assigns equal probabilities for the labeled histories 
(which are rooted trees with the internal nodes ordered  

by age), while Prior 1 (speciesmodelprior = 1) 

assigns equal probabilities for the rooted trees (Yang 
and Rannala, 2014). For instance, there are 15 rooted 
trees in the case of four species (A, B, C, and D), with 
12 unbalanced and 3 balanced trees. Each unbalanced 
tree, e.g., (((A, B), C), D), is compatible with only one 
labeled history as there is only one ordering of the in-
ternal nodes. Each balanced tree, e.g., ((A, B), (C, D)), 
is compatible with two labeled histories, depending on 
whether the ancestor of A and B is older or younger 
than the ancestor of C and D. Prior 0 assigns the proba-
bility 1/18 to each of the unbalanced trees and 2/18 to 
each of the balanced trees. Prior 1 assigns the probabil-
ity 1/15 to each of the 15 rooted trees. We use Prior 1, 
which is the default. Within each species tree model we 

assign the gamma priors  ~ G(2, 1000) for all s and  
~ G(2, 2000) for the root age.  

The program collects the species trees (as well as 

parameters s and s) into the sample file mcmc.txt. 

The BPP summary of the MCMC sample is shown in 
figure 4, which shows the top four species trees and 
their posterior probabilities. Those trees have a total 
posterior probability of 0.5 and thus constitute the 50% 
credibility set. The 95% credibility set includes 13 trees, 
while the 99% credibility set includes all the 15 possible 
trees. The majority-rule consensus tree is the star phy-
logeny. Overall there is very limited phylogenetic in-
formation in the five nuclear loci, due to the low levels 
of sequence divergence. 

It has been noted that a large prior mean for  makes 
the different species tree look similar and thus reduces 
the posterior probabilities for trees. The reader may 

wish to explore the impact of the prior for s and s on 
the posterior probabilities. Change the prior means so 
that they are a few times too large or a few times too 

small. For example, using  ~ G(2, 100) and  ~ G(2,  
 

 
 

Fig. 4  Analysis 01 
The top four species trees and their posterior probabilities, with a total 

probability of 0.5. The priors are  ~ G(2, 1000) for all populations 

and  ~ G(2, 2000) for the root age. 

10,000) will allow the prior mean to vary over two or-
ders of magnitude, which should be more than enough. 

Similarly you can use  ~ G(2, 200) and  ~ G(2, 20,000). 

3.3  Analysis A10: species delimitation on a guide tree 

In this analysis (with speciesdelimitation = 
1, speciestree = 0), a reversible-jump MCMC 

(rjMCMC) algorithm is used to move between different 
species-delimitation models that are compatible with a 
fixed guide tree (Yang and Rannala, 2010; Rannala and 
Yang, 2013). We run the program as follows. 

 

cd frogs\r1 
..\..\bpp ..\A10.bpp.ctl  
 

The control file uses the guide tree ((K, C), (L, H)), 
shown in Figure 2A. The rjMCMC algorithm will at-
tempt to collapse some of the internal nodes on the 
guide tree but will not change the guide tree. A col-
lapsed node means that the descendent populations of 
the node all belong to the same species. Thus five mod-
els of species delimitation and species phylogeny will 
be explored by the algorithm, all specified by the guide 
tree. These are KCLH (coded 000, 1 species), KC-LH 
(coded 100, 2 species), KC-L-H (coded 101, 3 species), 
K-C-LH (coded 110, 3 species), and K-C-L-H (coded 
111, 4 species). The models and their prior probabilities 
are listed on the screen at the start of the run, as follows.  

 
Number of species-delimitation models =  5 
        delimitation model   1: 000  prior  0.20 
        delimitation model   2: 100  prior  0.20 
        delimitation model   3: 101  prior  0.20 
        delimitation model   4: 110  prior  0.20 
        delimitation model   5: 111  prior  0.20 
 
[Note: Ancestral nodes in order:   5 KCLH  6 KC  7 LH] 
 

Here the model is coded using three 0-1 flags, which 
indicate whether the three ancestral nodes (5, 6, and 7 in 
fig. 2a) are present (flag 1) or absent (flag 0). For ex-
ample the fourth model (K-C-LH), coded 110, means 
that nodes 5 and 6 are present and their daughter nodes 
represent distinct species while node 7 is collapsed and 
its daughter nodes L and K are one species. When there 
are three or more delimited species in the model, the 
species tree is also fixed by the guide tree. For example, 
the 4th model K-C-LH (coded 110) has 3 species, and 
the species tree is (KC, (L, H)), as given by the guide 
tree. 

Two alternative rjMCMC algorithms are imple-
mented in BPP, specified as follows.  

 
speciesdelimitation = 1 0 2. * speciesdeli-

mitation algorithm0 and finetune(e) 
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speciesdelimitation = 1 1 2 1 * speciesdeli-
mitation algorithm1 finetune (a m) 

 

The first is Algorithm 0, with  = 2 in equations 3 and 

4 of Yang and Rannala (2010). Reasonable values for  
are 1, 2, 5, etc. The second is Algorithm 1, with  = 2 and 
m = 1 in equations 6 and 7 of Yang and Rannala (2010). 

Reasonable values are  = 1, 1.5, 2, etc. and m = 0.5, 1, 
2, etc. When the chain mixes well, the results should be 
the same between multiple runs using the two algorithms. 

We use the default prior for the different species tree 
models (speciesmodelprior = 1), which assigns 

equal probabilities for the rooted trees. We assign the 

same priors on s and s as before:  ~ G(2, 1000) for 

s and  ~ G(2, 2000) for the root age in every species 
phylogeny.  

The program collects the sampled delimitation model 

and the parameters in the model (s and s) in the sam-

ple file mcmc.txt. This is summarized by the program. 

The model of four species has posterior probability 0.87, 
while the three-species model that groups L and H into 
one species has posterior probability 0.13. The other 
models have negligible probabilities. 

In theory the transmodel MCMC generates both the 
posterior probabilities of the models and the posterior 

distribution of the parameters (s and s) within each 
model. The latter can be estimated by using only those 
samples in which the chain is in that particular model. 
This within-model parameter posterior can also be gene-
rated by running the simple MCMC (analysis A00) with 
the species delimitation and species tree fixed at that 
particular model (which can be achieved by editing the 
Imap and control files). We recommend this latter ap-
proach. This applies to all the transmodel inferences 
discussed in this paper.  

It has been noted that use of a large prior mean for  
makes BPP produce unresolved trees and/or lump popu-
lations into the same species (e.g., Leaché and Fujita, 
2010; Zhang et al., 2011; Pelletier et al., 2015). We 
leave it to the reader to explore the sensitivity of the 
posterior model probabilities to the prior specification. 
The reader may also wish to change the guide tree to 
examine its impact. Note that it is not sensible to avera-
ge the posterior model probabilities over different priors 
or over different runs (if some runs have failed to con-
verge), as in Pelletier et al. (2015). 
3.4  Analysis A11: Joint species delimitation and 
species-tree estimation  

In this analysis (with species delimitation = 
1, speciestree = 1), the algorithm explores dif-

ferent species delimitation models and different species 
phylogenies. The assignment of individuals to popula-
tions is nevertheless fixed: the program attempts to 
merge different populations into one species but never 
tries to split one population into multiple species. The 

nearest neighbor interchange (NNI) or subtree pruning 
and regrafting (SPR) algorithms are used to change the 
species tree topology, while rjMCMC is used to split 
one species into two or to join two populations into one 
species (Yang and Rannala, 2014). Run the program as 
follows. 

 
cd frogs\r1 
..\..\bpp ..\A11.bpp.ctl  
 

For analysis A11, BPP 3.1 provides four priors which 
assign probabilities to models. They are referred to as 
Priors 0, 1, 2 and 3. Prior 0 assigns equal probabilities 
for the labeled histories (rooted trees with the internal 
nodes ordered by age), while Prior 1 assigns equal pro-
babilities to the rooted species trees. Those two priors 
were implemented by Yang and Rannala (2014) and 
have been mentioned above. Priors 2 and 3 assign equal 
probabilities for the numbers of species (1/s each for 1, 
2, ..., and s delimited species given s populations) and 
then divide up the probability for any specific number 
of species among the compatible models (of species 
delimitation and species phylogeny) either in proportion 
to the number of compatible labeled histories (Prior 2) 
or uniformly (Prior 3). Priors 2 and 3 are mentioned by 
Yang and Rannala (2014) and but not implemented until 
this version. A detailed description of Priors 2 and 3 for 
the cases of four or five populations is given in Table 2. 
Prior 3 may be suitable when there is a large number of 
populations. One such scenario is when each individual 
(specimen) is assigned into its own “population”, so that 
BPP will explore different models of assignment, species 
delimitation and species tree estimation (Olave et al., 
2014). Here in this tutorial, we use Prior 1.  

Within each model we assign the priors  ~ G(2, 

1000) for all s and  ~ G(2, 2000) for the root age in 
each species tree when there are two or more species in 
the model. The species tree in the control file is used as 
the starting guide tree. When the algorithm converges, 
use of different starting guide trees should lead to the 
same results. 

From this run, the posterior probability for four spe-
cies (K, C, L, H) is 0.95, while that for three species is 
0.05 (0.03 for joining L and H into one species and 0.01 
for joining K and H). There is evidence in the dataset 
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Table 2  Prior probabilities for models specified by Priors 2 and 3 for the cases of four and five populations (for Analysis 
A11) 

Prior 2 Prior 3 

(a) The case of four populations (A, B, C, D) (41 models in total) 

P1 = 0.25: 1 delimitation ABCD 

P2 = 0.25: 4 delimitations of form A-BCD (each 0.05), 3 delimitations of form AB-CD (each 0.05/3 = 0.0167), 

P3 = 0.25: 6 delimitations of form A-B-CD, 3 trees for each (18 models, each 0.25/18 = 0.0139) 

P4 = 0.25: 1 delimitation A-B-C-D, 15 trees (12 unbalanced trees, each 
0.25/18 = 0.0139, and 3 balanced trees, each 0.25/9 = 0.0278) 

P4 = 0.25: 1 delimitation A-B-C-D, 15 trees (each 0.25/15 = 0.0167) 

(b) The case of five populations (A, B, C, D, E) (346 models in total) 

P1 = 0.2: 1 delimitation ABCDE 

P2 = 0.2: 5 delimitations of form A-BCDE (each 0.2/10515 = 0.0286), 10 delimitations of form AB-CDE (each 0.2/105  3 = 0.0056), 

P3 = 0.2: 10 delimitations of form A-B-CDE, 3 trees for each (30 models, each 0.2/135  3 = 0.00444); 15 delimitations of form A-BC-DE, 3 

trees for each (45 modes, each 0.2/135 = 0.00148) 
  

P4 = 0.2: 10 delimitations of form A-B-C-DE, each 15 trees (10  12 

trees, each 0.2/180 = 0.00111 and 10  3 trees each 0.00222) 

P4 = 0.2: 10 delimitations of form A-B-C-DE, each 15 trees (150 
models, each 0.2/150 = 0.00133) 

  

P5 = 0.2: 1 delimitation A-B-C-D-E, 105 trees: 
60 trees of form (((A, B), C), D), E) (each 0.2/180 = 0.00111); 
30 trees of form ((A,B)((C,D)E)) (each 0.00333); 
15 trees of form (((A, B)(C, D))E) (each 0.00222) 

P5 = 0.2: 1 delimitation A-B-C-D-E, 105 trees (0.2/105= 0.00190) 

Note: Species delimitation is indicated using dashes, and species tree using the parenthesis notation. Both Priors 2 and 3 assign equal prior probabil-
ities to the different numbers of species (1/4 each for four populations and 1/5 each for five populations). For example, in the case of five popula-
tions, Prior 3 partitions P4 = 0.2 for four species among the 150 compatible models uniformly, with each receiving probability 0.2/150 = 0.00133. 
Prior 2 partitions P4 = 0.2 in proportion to the number of labeled histories, so that 120 unbalanced tree models are assigned the probability 0.2/180 
each while 30 balanced tree models receive 0.2/90 each. Priors 2 and 3 assign the same prior probabilities for models of 1, 2, and 3 species. 
 

for distinct species status for the two R. chensinensis 
populations (C and L), although the evidence is not very  
strong. It has been suggested that different populations 
be declared distinct species only if the posterior proba-
bility exceeds a threshold such as 95% or 99% (Rannala 
and Yang, 2013). The phylogenetic relationships among 
the delimited species are highly uncertain, with the 95% 
credibility set including as many as 15 models. The data 
seem to contain far more information about species de-
limitation than about species phylogeny. This is also the 
pattern found in the analyses of other datasets (Yang 
and Rannala, 2014; Caviedes Solis et al., 2015). Thus 
the unguided delimitation (A11) should be preferred 
over species delimitation using a fixed guide tree (A10).  

Mitochondrial introgression. In all analyses de-
scribed above, the three R. chensinensis samples invo-
lved in mitochondrial introgression are assigned to the 
C clade. Here we conduct a joint species-delimitation 
and species tree estimation by assigning those samples 
to a population of their own (m). The modified control 
file is named A11.bpp.introgression.ctl, 
which defines five populations instead of four, and uses 
the Imap file frogs.Imap.introgression.txt. 
Run BPP as follows. 

 

..\..\bpp ..\A11.bpp.introgression.ctl  

The posterior probability for five delimited species 

(K, m, C, L, H) is 0.71, and the probability for 4 species 

is 0.28 (0.24 for merging m and C into one species and 

0.02 for merging L and H into one species), and the 

probability for 3 species is 0.01. The maximum a post-

eriori probability (MAP) model is the five-species 

model ((L, H), (K, (m, C))), but the posterior probability 

is very low, at 8%. Given the species delimitation, the 

species phylogeny is highly uncertain. 

Table 3 summarizes results obtained from using dif-

ferent priors on θs and s. The prior mean for θs has 

considerable influence on the Bayesian model selection, 

with larger prior means favouring fewer species. In 

comparison, the prior on  has much less impact. For 

example, with the priors  ~ G(2, 100) and  ~ G(2, 

200), in which case the prior means are 10 times too 

large, the posterior probabilities for 5, 4, and 3 species 

become 0.52, 0.41, and 0.07, compared with 0.71, 0.28, 

and 0.01 discussed above for the prior  ~ G(2, 1000) 

and  ~ G(2, 2000). The MAP model is ((L, H), (K, (m, 

C))), with the posterior probability 8%. Overall, the 

prior on parameters influences the posterior probabili-

ties of the models but does not change the ranking of 

the models.  
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Table 3  Posterior probabilities for the number of deli-
mited species using different priors for model parameters 
(Analysis A11) 

Prior 
Posterior probability for  

the number of delimited species

(a) Using four populations (K, C, L, H) 

 ~ G(2, 1000),  ~ G(2, 2000) P4 = 0.95, P3 = 0.05  

 ~ G(2, 100),  ~ G(2, 200) P4 = 0.83, P3 = 0.17 

 ~ G(2, 100),  ~ G(2, 2000) P4 = 0.81, P3 = 0.19 

 ~ G(2, 1000),  ~ G(2, 200) P4 = 0.96, P3 = 0.04 

  

(b) Using five populations (K, m, C, L, H) 

 ~ G(2, 1000),  ~ G(2, 2000) P5 = 0.71, P4 = 0.28, P3 = 0.01 

 ~ G(2, 100),  ~ G(2, 200) P5 = 0.52, P4 = 0.41, P3 = 0.07 

 ~ G(2, 100),  ~ G(2, 2000) P5 = 0.53, P4 = 0.40, P3 = 0.07 

 ~ G(2, 1000),  ~ G(2, 200) P5 = 0.69, P4 = 0.29, P3 = 0.02 

Note: Three individuals in the data appear to be involved in mito-
chondrial introgression, and are assigned to population C in the 4-  
population analysis (a) and to a population of their own (m) in the 5-  
population analysis (b). Prior 1, which assumes uniform probabilities 
for the rooted trees, is assumed. 

 

4  Discussion 

4.1  Assumptions, strengths and weaknesses of the 
bpp analysis 

Here we provide a brief discussion of the assump-
tions made in all BPP analyses described in this paper 
and their possible effects, as well as the strengths and 
weaknesses of the BPP analysis compared with some of 
the alternatives. The analysis in BPP makes the follow-
ing standard assumptions: (i) no recombination among 
sites within a locus and free recombination between loci; 
(ii) neutral clock-like evolution at each locus and JC69 
mutation model (Jukes and Cantor, 1969); and (iii) no 
migration (gene flow) between species.  

The assumptions concerning recombination suggest 
that suitable sequence data for the program should be 
short segments of the genome that are loosely linked, 
such that recombination among sites within each seg-
ment is negligible while the segments are far apart so 
that they are nearly freely recombining. For organisms 
with very high recombination rates, the assumption of 
no recombination within a locus may be seriously vio-
lated. Lanier and Knowles (2012) has examined the 
impact of recombination on species tree inference using 
*BEAST (Heled and Drummond, 2010) and STEM (Ku-
batko et al., 2009) and found that it had only minimal 
impact. The effect of recombination on species delimi-
tation may be similar.  

The assumption of neutral evolution at the loci may 

not be as important as is often suggested in the literature. 
Protein-coding gene sequences should be useable in a 
BPP analysis if the proteins are performing similar func-
tions in the different species and under similar selective 
constraints. Such purifying selection has the effect of 
reducing the neutral mutation rate, although it may be 
necessary to accommodate the variation in mutation rate 
among loci in the analysis. In contrast, species-specific 
directional selection may distort the shape of the ge-
nealogical tree and have more serious impact on species 
delimitation and species tree estimation. Analysis of 
such loci using BPP should proceed with caution. It may 
be useful to examine the posterior distribution of the 
gene trees since directional or positive selection may be 
expected to lead to unusual gene trees. The major role 
of the mutation model in the analysis is to correct for 
multiple hits at the same site. If the species and popula-
tions are closely related and the sequences are highly 
similar, the JC69 model should be adequate. This may 
be the case for species delimitation (analyses A10 and 
A11). However for species tree estimation when the 
species are divergent (analysis A01), as in the case of 
phylogeny estimation for placental mammals (Gatesy 
and Springer, 2013), both the molecular clock and the 
JC69 model may be seriously violated. Use of BPP in 
such cases is not advisable. Relaxed-clock models and 
sophisticated nucleotide-substitution models are yet to 
be implemented in BPP.  

The models implemented in BPP ignore possible mi-
gration between populations or species. This means that 
one cannot use BPP to estimate the migration rates be-
tween species. Migration is also expected to influence 
species delimitation, and should homogeneize the spe-
cies, causing BPP to lump distinct species into one spe-
cies. The simulation conducted by Zhang et al. (2011) 
suggests that BPP behaves sensibly in presence of mi-
gration. When migration rate is low, with < 0.1 migrants 
per generation, say, migration is found to have little 
effect on species delimitation by BPP. However, when 
the migration rate is very high, with as many as 10 mi-
grants per generation, BPP tends to infer one species. 
Thus BPP appears to behave like a pragmatic taxonomist. 
The impact of migration on species tree estimation has 
been evaluated by Leaché et al. (2014). The situation is 
complex. For example, gene flow may either hinder or 
improve species tree estimation, depending on which 
species are exchanging migrants. 

Given the assumptions discussed above, BPP is a full 
likelihood-based implementation of the MSC model. 
The gene tree topologies and branch lengths (coalescent 
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times) have independent probability distributions among 

loci specified by the species tree and parameters (s and 

s) (Rannala and Yang, 2003). Given the gene tree to-
pology and branch lengths at each locus, the likelihood 
(or the probability of the sequence alignment at the lo-
cus) is calculated using Felsenstein’s (1981) pruning 
algorithm under the JC9 mutation model. See Yang 
(2014: Chapters 6 and 9) for an introduction to the 
MCMC computational algorithms. The implementation 
in BPP is thus in contrast to the heuristic or short-cut 
coalescent methods, which typically involve using phy-
logenetic methods to estimate the gene trees and then 
using the estimated gene trees to infer the species tree, 
without accommodating properly the uncertainties in 
the estimated gene trees. Some of those heuristic me-
thods use the gene tree topologies and ignore informa-
tion in the branch lengths, leading to dramatic loss of 
information (Gatesy and Springer, 2013).  

The advantages of the BPP analysis have been dis-
cussed by a number of authors (Fujita and Leaché, 2011; 
Fujita et al., 2012; Yang, 2014: Chapter 9; Rannala, 
2015). The program accounts for ancestral polymor-
phism and incomplete lineage sorting. It makes a full 
use of the information in the sequence data, and ac-
commodates the uncertainties in the topologies and 
branch lengths in the gene trees at the individual loci. 
The latter feature may be important for species delimi-
tation and species tree estimation when the involved 
species are closely related and the sequences at any lo-
cus are highly similar and thus contain little phyloge-
netic information.  
4.2  What to report in your study 

Almost all studies using MRBAYES (Ronquist et al., 
2012) or BEAST (Drummond and Rambaut, 2007) report 
the number of iterations, but very few clearly specify 
the priors used in the analysis. However, the number of 
iterations is neither necessary nor sufficient to guarantee 
the success of an MCMC run. Nor is it required for re-
producing the analysis. Different MCMC programs use 
very different algorithms so that an iteration in one pro-
gram is not comparable with an iteration in another. For 
example, in MRBAYES  and BEAST, one iteration may 
be equivalent to sampling one parameter in the model 
for updating, while one iteration in BPP may be equiva-
lent to updating all parameters in the model one by one. 
In that case one iteration in BPP may be worth 103 or 104 
iterations in MRBAYES or BEAST. In contrast, knowledge 
of the prior specification is necessary for reproducing a 
Bayesian analysis. Thus we encourage the reporting of 
the specification of the prior. 

4.3  Mixing problems with the MCMC algorithms 
in bpp 

As mentioned above, analyses A01, A10, and A11 
are transmodel inferences, and in those analyses, BPP in 
effect conducts a standard Bayesian model selection. 
Each of those models is an instance of the MSC model, 
but the number and nature of the species and the species 
phylogeny may differ among those models. For exam-
ple, in the species-delimitation analysis (A10) of the 
tutorial, both models KC-L-H (3 species) and K-C-LH 
(3 species) have three species but they are not the same 
three species.  

For the example dataset of the frogs, the BPP algo-
rithms appear to have worked well in all four analyses. 
Nevertheless, it has been noted that the transmodel in-
ferences (A01, A10, and A11) may suffer from mixing 
problems in some datasets. The mixing problem here 
concerns the efficiency but not the correctness of the 
algorithm. A correct MCMC algorithm should visit the 
different models in proportion to their posterior proba-
bilities. However, an efficient algorithm may jump be-
tween models frequently while an inefficient (lazy) al-
gorithm may stay in one model for a long time before it 
jumps, and then stays in the new model for a long time 
before it jumps. Both algorithms are correct in the sense 
that in the long run they both visit the models in propor-
tion to the posterior probabilities. However, the lazy 
algorithm may be very inefficient as it takes an ex-
tremely long chain to generate reliable results. The main 
symptom for poor mixing of the transmodel algorithm is 
that the chain gets stuck in one model (or a subset of 
models), and multiple runs (each over a finite number of 
iterations) produce different results. Mixing problems 
tend to be worse and occur more frequently for larger 
datasets but can occur even for small datasets. It has 
been noted that multiple runs using different starting 
species trees or species delimitation models are effec-
tive in exposing mixing problems, and that consistency 
of results among multiple runs is a good indication for 
the success of the run. It is thus important to conduct 
multiple runs for the transmodel inferences.  
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